首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   489篇
  免费   19篇
  国内免费   34篇
  2023年   8篇
  2022年   9篇
  2021年   27篇
  2020年   13篇
  2019年   21篇
  2018年   15篇
  2017年   13篇
  2016年   24篇
  2015年   20篇
  2014年   39篇
  2013年   48篇
  2012年   48篇
  2011年   34篇
  2010年   24篇
  2009年   21篇
  2008年   27篇
  2007年   18篇
  2006年   16篇
  2005年   17篇
  2004年   15篇
  2003年   15篇
  2002年   14篇
  2001年   10篇
  2000年   6篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   7篇
  1992年   6篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1970年   1篇
排序方式: 共有542条查询结果,搜索用时 15 毫秒
61.
DivIB, DivIC and FtsL are bacterial proteins essential for cell division, which show interdependencies for their stabilities and localization. We have reconstituted in vitro a trimeric complex consisting of the recombinant extracellular domains of the three proteins from Streptococcus pneumoniae. The extracellular domain of DivIB was found to associate with a heterodimer of those of DivIC and FtsL. The heterodimerization of DivIC and FtsL was artificially constrained by fusion with interacting coiled-coils. Immunofluorescence experiments showed that DivIC is always localized at mid-cell, in contrast to DivIB and FtsL, which are co-localized with DivIC only during septation. Taken together, our data suggest that assembly of the trimeric complex DivIB/DivIC/FtsL is regulated during the cell cycle through controlled formation of the DivIC/FtsL heterodimer.  相似文献   
62.
Fatty acid has been reported to be associated with cardiovascular diseases and cancer, but the possible mechanism remains unclear. Here, we reported a novel mechanism for the permissive role of fatty acid on iron intracellular translocation and subsequent oxidative injury. In vitro study from endothelial cells showed that iron alone had little effect, whereas in combination with PA (palmitic acid), iron-mediated toxicity was markedly potentiated, as reflected in mitochondrial dysfunction, cell death, apoptosis, and DNA mutation. We also showed that PA not only facilitated iron translocation into cells through a transferrin-receptor (TfR)-independent mechanism, but also translocated iron into mitochondria; the subsequent intracellular iron overload resulted in reactive oxygen species (ROS) overgeneration and lipid oxidation. Further investigation revealed that PA-facilitated iron translocation is due to Fe/PA-mediated extracellular oxidative stress and the subsequent membrane damage with increased membrane permeability. Fe/PA-mediated toxic effects were reduced in rho0 cells lacking mitochondrial DNA or by antioxidant enzyme SOD, especially mitochondrially localized MnSOD, suggesting a permissive role of PA for iron deposition on the vascular wall and its subsequent toxicity via mitochondrial oxidative stress. This observation was confirmed in vivo in mice, wherein higher vascular iron deposition and accompanying superoxide release were observed in the presence of a high-fat diet with iron administration.  相似文献   
63.
A 3D sodium(I) complex driven by the coordination bonds and a 3D hydrogen-bond-sustained network, with empirical formulae [Na2(3,5-pdc)(H2O)4]n (1) and [Na2(4-pc)2(H2O)8]n (2), respectively, have been synthesized and characterized. X-ray single crystal determination of 1 reveals that two types of hexa-coordinate sodium(I) ions are alternately arranged through three double μ2-OH2 bridges and one double μ2 oxygen bridge coming from one carboxylic oxygen atom of a 3,5-pdc ligand. In comparison to 1, only one kind of six-coordinate sodium ions in octahedral coordination configurations is bridged by double μ2 aqua bridges in 2 forming a straight line via the similar Na-Na separations. In addition, the fixation of coordinating bonds around the sodium centers in 1 makes pyridine rings parallel to each other and the centroid-centroid separation of 3.539 Å, while in complex 2 pyridine rings are arranged more flexibly merely by the hydrogen bonding interactions associated with its nitrogen atom and a carboxylic group. To the best of our knowledge, 1 is the first 3D framework sustained only by coordination interactions between alkali metals and carboxylates. It is also noted that two types of hexa-coordinate sodium(I) centers are present in complex 1 at the same time and two kinds of topologies (zig-zag and ring) are produced. Complex 2 is an unprecedented 3D sodium(I) network sustained by the hydrogen bonding and the π-π interactions in the absence of coordination forces.  相似文献   
64.
A new C-type lectin-like gene encodes 293 amino acids and maps to chromosome 19p13.3 adjacent to the previously described C-type lectin genes, CD23, dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), and DC-SIGN-related protein (DC-SIGNR). The four genes form a tight cluster in an insert size of 105 kb and have analogous genomic structures. The new C-type lectin-like molecule, designated liver and lymph node sinusoidal endothelial cell C-type lectin (LSECtin), is a type II integral membrane protein of approximately 40 kDa in size with a single C-type lectin-like domain at the COOH terminus, closest in homology to DC-SIGNR, DC-SIGN, and CD23. LSECtin mRNA was only expressed in liver and lymph node among 15 human tissues tested, intriguingly neither expressed on hematopoietic cell lines nor on monocyte-derived dendritic cells (DCs). Moreover, LSECtin is expressed predominantly by sinusoidal endothelial cells of human liver and lymph node and co-expressed with DC-SIGNR. LSECtin binds to mannose, GlcNAc, and fucose in a Ca(2+)-dependent manner but not to galactose. Our results indicate that LSECtin is a novel member of a family of proteins comprising CD23, DC-SIGN, and DC-SIGNR and might function in vivo as a lectin receptor.  相似文献   
65.
66.
Abonyo BO  Gou D  Wang P  Narasaraju T  Wang Z  Liu L 《Biochemistry》2004,43(12):3499-3506
The secretion of lung surfactant in alveolar type II cells is a complex process involving the fusion of lamellar bodies with the plasma membrane. This process is somewhat different from the exocytosis of hormones and neurotransmitters. For example, it is a relatively slower process, and lamellar bodies are very large vesicles with a diameter of approximately 1 microm. SNARE proteins are the conserved molecular machinery of exocytosis in the majority of secretory cells. However, their involvement in surfactant secretion has not been reported. Here, we showed that syntaxin 2 and SNAP-23 are expressed in alveolar type II cells. Both proteins are associated with the plasma membrane, and to some degree with lamellar bodies. An antisense oligonucleotide complementary to syntaxin 2 decreased its mRNA and protein levels. The same oligonucleotide also inhibited surfactant secretion, independent of secretagogues. A peptide derived from the N-terminus of syntaxin 2 or the C-terminus of SNAP-23 significantly inhibited Ca(2+)- and GTPgammaS-stimulated surfactant secretion from permeabilized type II cells in a dose-dependent manner. Furthermore, introduction of anti-syntaxin 2 or anti-SNAP-23 antibodies into permeabilized type II cells also inhibited surfactant release. Our results suggest that syntaxin 2 and SNAP-23 are required for regulated surfactant secretion.  相似文献   
67.
The establishment of the correct conceptual framework is vital to any scientific discipline including cancer research. Influenced by hematologic cancer studies, the current cancer concept focuses on the stepwise patterns of progression as defined by specific recurrent genetic aberrations. This concept has faced a tough challenge as the majority of cancer cases follow non-linear patterns and display stochastic progression. In light of the recent discovery that genomic instability is directly linked to stochastic non-clonal chromosome aberrations (NCCAs), and that cancer progression can be characterized as a dynamic relationship between NCCAs and recurrent clonal chromosome aberrations (CCAs), we propose that the dynamics of NCCAs is a key element for karyotypic evolution in solid tumors. To support this viewpoint, we briefly discuss various basic elements responsible for cancer initiation and progression within an evolutionary context. We argue that even though stochastic changes can be detected at various levels of genetic organization, such as at the gene level and epigenetic level, it is primarily detected at the chromosomal or genome level. Thus, NCCA-mediated genomic variation plays a dominant role in cancer progression. To further illustrate the involvement of NCCA/CCA cycles in the pattern of cancer evolution, four cancer evolutionary models have been proposed based on the comparative analysis of karyotype patterns of various types of cancer.  相似文献   
68.
69.
cDNA macroarray has become a useful tool to analyze expression profiles and compare the similarities and differences of various expression patterns. We have prepared a cDNA macroarray containing 190 maize expressed sequence tags (ESTs) specifically induced by water stress to analyze the expression profiles of maize seedlings under abscisic acid (ABA) treatment, high-salinity and cold stress conditions. The results indicated that 48 ESTs in leaves and 111 ESTs in roots were significantly up-regulated by ABA treatment, 36 ESTs in leaves and 41 ESTs in roots by high-salinity stress, 14 ESTs in leaves and 18 ESTs in roots by cold induction, whereas 22 ESTs were induced under all 3 stresses. Results from the hierarchical cluster analysis suggest that the leaves and roots of maize seedlings had different expression profiles after these stresses. The overlap analysis of different stress-induced ESTs indicated that there is more crosstalk between water stress and ABA and high-salinity stress than between water stress and cold stress. It will be helpful to study the precise function of the corresponding overlapping-induced genes for understanding the relationship and crosstalk between different stress signal pathways.  相似文献   
70.
体外诱导成年大鼠骨髓间充质干细胞分化为具有神经元表型和部分功能的细胞。在对Woodbury化学诱导法作改良的基础上,加用全反式视黄酸对骨髓间充质干细胞作预诱导。诱导3h后,细胞开始表现神经元的形态特征,细胞折光性增强,形成收缩的双极或多极胞体和细长突起。细胞可以维持神经元样存活72h以上。诱导5h后,对免疫染色的细胞用DAPI进行复染,(92.4±6.9)%的细胞表达神经元特异性烯醇化酶。诱导24h后,(93.9±5.2)%的细胞表达成熟神经元的标志物神经丝M H。在给予5-羟色胺刺激时可以产生与神经元相似的胞内钙离子峰,且免疫组化证实5-羟色胺1A受体在干细胞上表达微弱,但在分化后的神经元中表达较强。实验不仅从形态、细胞标志物而且从功能上证实诱导后的细胞为5-羟色胺敏感性神经元。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号