首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   616篇
  免费   45篇
  661篇
  2023年   4篇
  2022年   5篇
  2021年   10篇
  2020年   4篇
  2019年   10篇
  2018年   15篇
  2017年   21篇
  2016年   24篇
  2015年   25篇
  2014年   29篇
  2013年   46篇
  2012年   46篇
  2011年   46篇
  2010年   26篇
  2009年   23篇
  2008年   39篇
  2007年   32篇
  2006年   28篇
  2005年   15篇
  2004年   16篇
  2003年   15篇
  2002年   18篇
  2001年   15篇
  2000年   9篇
  1999年   14篇
  1998年   4篇
  1997年   5篇
  1996年   2篇
  1994年   5篇
  1992年   10篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1986年   4篇
  1985年   9篇
  1984年   7篇
  1983年   4篇
  1982年   6篇
  1981年   6篇
  1980年   3篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1974年   4篇
  1973年   6篇
  1971年   4篇
  1968年   3篇
  1967年   2篇
排序方式: 共有661条查询结果,搜索用时 15 毫秒
161.
Emergence of high-throughput sequencing tools and omics technologies paved the way for systems biology in last decade. While we have started to look at the biology of the plant in a more unified manner, the integration of such knowledge in agricultural biotechnology has become an arena of potential interest. The network of several central molecules operating in various life and developmental processes are now more adequately known, and fine tuning of such molecule pools, if connected to stress response, can result in enhanced stress tolerance of plants.This review interprets the potential of manipulation of myo-inositol and its derivatives in generation of transgenic crop plants. Being a molecule of central importance in plant life, inositol is connected to numerous life processes. The exploration of such pathways indicates that inositol itself and many of its derivatives can impart abiotic stress tolerance (against salinity, dehydration, chilling or oxidative stress) to plants when overexpressed. We propose that engineering inositol metabolic network is a potential approach towards stress-tolerant transgenic crop plant generation and thus its exploitation in agricultural biotechnology is the call of time.  相似文献   
162.
Normal cell growth consists of two distinct phases, quiescence and proliferation. Quiescence, or G(0), is a reversible growth arrest in which cells retain the ability to reenter the proliferative cycle (G(1), S, G(2), and M). Although not actively dividing, quiescent cells are metabolically active and quiescence is actively maintained. Our results from microRNA PCR arrays and Taqman PCR assays showed a significant decrease (4-fold) in miR-302 levels during quiescence compared to proliferating normal human fibroblasts, suggesting that miR-302 could regulate cellular proliferation. Results from a Q-RT-PCR and dual-luciferase-3'-UTR reporter assays identified ARID4a (AT-rich interacting domain 4a, also known as RBP1) and CCL5 (C-C motif ligand 5) as targets for miR-302. Ionizing radiation decreased miR-302 levels, which was associated with an increase in its target mRNA levels, ARID4a and CCL5. Such an inverse correlation was also observed in cells treated with hydrogen peroxide as well as SOD2-overexpressing cells. Overexpression of miR-302 suppresses ARID4a and CCL5 mRNA levels, and increased the percentage of S-phase cells. These results identified miR-302 as an ROS-sensitive regulator of ARID4a and CCL5 mRNAs as well as demonstrate a regulatory role of miR-302 during quiescence and proliferation.  相似文献   
163.
Studies of morphological integration can provide insight into developmental patterns, even in extinct taxa known only from skeletal remains, thus making them an important tool for studies of evolutionary development. However, interpreting patterns of integration and assessing their significance for organismal evolution requires detailed understanding of the developmental interactions that shape integration and how those interactions change through ontogeny. Thus far, relatively little comparative data have been produced for this important topic, and the data that do exist are overwhelmingly from humans and their close relatives or from laboratory models such as mice. Here, we compare data on shape, variance and integration through postnatal ontogeny for a placental mammal, the least shrew, Cryptotis parva, and a marsupial mammal, the gray short-tailed opossum, Monodelphis domestica. Cranial variance decreased dramatically from early to late ontogeny in Cryptotis, but remained stable through ontogeny in Monodelphis, potentially reflecting functional constraints related to the short gestation and early ossification of oral bones in marsupials. Both Cryptotis and Monodelphis showed significant changes in cranial integration through ontogeny, with a mixture of increased, decreased and stable levels of integration in different cranial regions. Of particular note is that Monodelphis showed an unambiguous decrease in integration of the oral region through ontogeny, potentially relating to their early ossification. Selection at different stages of development may have markedly different effects if patterns of integration change substantially through ontogeny. Our results suggest that high integration of the oral region combined with functional constraints for suckling during early postnatal ontogeny may drive the stagnant variance observed in Monodelphis and potentially other marsupials.  相似文献   
164.
HFE and transferrin receptor 2 (TFR2) are membrane proteins integral to mammalian iron homeostasis and associated with human hereditary hemochromatosis. Here we demonstrate that HFE and TFR2 interact in cells, that this interaction is not abrogated by disease-associated mutations of HFE and TFR2, and that TFR2 competes with TFR1 for binding to HFE. We propose a new model for the mechanism of iron status sensing that results in the regulation of iron homeostasis.  相似文献   
165.
Escherichia coli nucleoside-diphosphate kinase (Ndk) catalyzes nucleoside triphosphate synthesis and maintains intracellular triphosphate pools. Mutants of E. coli lacking Ndk exhibit normal growth rates but show a mutator phenotype that cannot be entirely attributed to the absence of Ndk catalytic activity or to an imbalance in cellular triphosphates. It has been suggested previously that Ndk, similar to its human counterparts, possesses nuclease and DNA repair activities, including the excision of uracil from DNA, an activity normally associated with the Ung and Mug uracil-DNA glycosylases (UDGs) in E. coli. Here we have demonstrated that recombinant Ndk purified from wild-type E. coli contains significant UDG activity that is not intrinsic, but rather, is a consequence of a direct physical and functional interaction between Ung and Ndk, although a residual amount of intrinsic UDG activity exists as well. Co-purification of Ung and Ndk through multicolumn low pressure and nickel-nitrilotriacetic acid affinity chromatography suggests that the interaction occurs in a cellular context, as was also suggested by co-immunoprecipitation of endogenous Ung and Ndk from cellular extracts. Glutathione S-transferase pulldown and far Western analyses demonstrate that the interaction also occurs at the level of purified protein, suggesting that it is specific and direct. Moreover, significant augmentation of Ung catalytic activity by Ndk was observed, suggesting that the interaction between the two enzymes is functionally relevant. These findings represent the first example of Ung interacting with another E. coli protein and also lend support to the recently discovered role of nucleoside-diphosphate kinases as regulatory components of multiprotein complexes.  相似文献   
166.
A clinical strength MRI and intact bovine caudal intervertebral discs were used to test the hypotheses that (1) mechanical loading and trypsin treatment induce changes in NMR parameters, mechanical properties and biochemical contents; and (2) mechanical properties are quantitatively related to NMR parameters. MRI acquisitions, confined compression stress-relaxation experiments, and biochemical assays were applied to determine the NMR parameters (relaxation times T1 and T2, magnetization transfer ratio (MTR) and diffusion trace (TrD)), mechanical properties (compressive modulus H(A0) and hydraulic permeability k(0)), and biochemical contents (H(2)O, proteoglycan and total collagen) of nucleus pulposus tissue from bovine caudal discs subjected to one of two injections and one of two mechanical loading conditions. Significant correlations were found between k(0) and T1 (r=0.75,p=0.03), T2 (r=0.78, p=0.02), and TrD (r=0.85, p=0.007). A trend was found between H(A0) and TrD (r=0.56, p=0.12). However, loading decreased these correlations (r=0.4, p=0.2). The significant effect of trypsin treatment on mechanical properties, but not on NMR parameters, may suggest that mechanical properties are more sensitive to the structural changes induced by trypsin treatment. The significant effect of loading on T1 and T2, but not on H(A0) or k(0), may suggest that NMR parameters are more sensitive to the changes in water content enhanced by loading. We conclude that MRI offers promise as a sensitive and non-invasive technique for describing alterations in material properties of intervertebral disc nucleus, and our results demonstrate that the hydraulic permeability correlated more strongly to the quantitative NMR parameters than did the compressive modulus; however, more studies are necessary to more precisely characterize these relationships.  相似文献   
167.
Huntington's disease (HD) is a familial neurodegenerative disorder caused by an abnormal expansion of CAG repeats in the coding region of huntingtin gene. A major hallmark of HD is the proteolytic production of N-terminal fragments of huntingtin containing polyglutamine repeats that form ubiquitinated aggregates in the nucleus and cytoplasm of the affected neurons. However, the mechanism by which the mutant huntingtin causes neurodegeneration is not well understood. Here, we found that oxidative stimuli enhance the polyglutamine-expanded truncated N-terminal huntingtin (mutant huntingtin) aggregation and mutant huntingtin-induced cell death. Oxidative stimuli also lead to rapid proteasomal dysfunction in the mutant huntingtin expressing cells as compared to normal glutamine repeat expressing cells. Overexpression of Cu/Zn superoxide dismutase (SOD1), Hsp40 or Hsp70 reverses the oxidative stress-induced proteasomal malfunction, mutant huntingtin aggregation, and death of the mutant huntingtin expressing cells. Finally, we show the higher levels of expression of SOD1 and DJ-1 in the mutant huntingtin expressing cells. Our result suggests that oxidative stress-induced proteasomal malfunction might be linked with mutant huntingtin-induced cell death.  相似文献   
168.
169.
E. D?afi?  P. Goswami  W. Mäntele 《BBA》2009,1787(6):730-737
In this study, structural, functional, and mechanistic properties of the Na+/H+ antiporter MjNhaP1 from Methanococcus jannaschii were analyzed by infrared spectroscopic techniques. Na+/H+ antiporters are generally responsible for the regulation of cytoplasmic pH and Na+ concentration. MjNhaP1 is active in the pH range between pH 6 and pH 6.5; below and above it is inactive.The secondary structure analysis on the basis of ATR-IR spectra provides the first insights into the structural changes between inactive (pH 8) and active (pH 6) state of MjNhaP1. It results in decreased ordered structural elements with increasing the pH-value i.e. with inactivation of the protein. Analysis of temperature-dependent FTIR spectra indicates that MjNhaP1 in the active state exhibits a much higher unfolding temperature in the spectral region assigned to α-helical segments. In contrast, the temperature-induced structural changes for β-sheet structure are similar for inactive and active state. Consequently, this structure element is not the part of the activation region of the protein. The surface accessibility of the protein was analyzed by following the extent of H/D exchange. Due to higher content of unordered structural elements a higher accessibility for amide protons is observed for the inactive as compared to the active state of MjNhaP1. Altogether, the results present the active state of MjNhaP1 as the state with ordered structural elements which exhibit high thermal stability and increased hydrophobicity.  相似文献   
170.
A synthetic gene encoding a Streptomyces l-proline-3-hydroxylase was constructed and used to produce the hydroxylase protein in recombinant Escherichia coli. A fermentation process for growth of this recombinant E. coli for enzyme production was scaled-up to 250 L. A biotransformation process was developed using cell suspensions of the recombinant E. coli and subsequently scaled-up to 10 L for conversion of l-proline to cis-3-hydroxy-l-proline. A reaction yield of 85 M% and d.e. of 99.9% was obtained for cis-3-hydroxy-l-proline.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号