首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1167篇
  免费   67篇
  2023年   5篇
  2022年   9篇
  2021年   14篇
  2020年   11篇
  2019年   8篇
  2018年   14篇
  2017年   22篇
  2016年   22篇
  2015年   32篇
  2014年   39篇
  2013年   69篇
  2012年   62篇
  2011年   61篇
  2010年   35篇
  2009年   39篇
  2008年   70篇
  2007年   68篇
  2006年   38篇
  2005年   63篇
  2004年   59篇
  2003年   43篇
  2002年   41篇
  2001年   34篇
  2000年   26篇
  1999年   35篇
  1998年   22篇
  1997年   11篇
  1996年   13篇
  1995年   11篇
  1994年   8篇
  1993年   10篇
  1992年   23篇
  1991年   15篇
  1990年   18篇
  1989年   29篇
  1988年   13篇
  1987年   11篇
  1986年   8篇
  1985年   14篇
  1984年   13篇
  1983年   11篇
  1982年   6篇
  1981年   12篇
  1980年   6篇
  1974年   5篇
  1973年   6篇
  1972年   6篇
  1970年   5篇
  1969年   6篇
  1968年   5篇
排序方式: 共有1234条查询结果,搜索用时 15 毫秒
61.
62.
The trafficking of aquaporin-2 (AQP2) involves multiple complex pathways, including regulated, cAMP-, and cGMP-mediated pathways, as well as a constitutive recycling pathway. Although several accessory proteins have been indirectly implicated in AQP2 recycling, the direct protein-protein interactions that regulate this process remain largely unknown. Using yeast two-hybrid screening of a human kidney cDNA library, we have identified the 70-kDa heat shock proteins as AQP2-interacting proteins. Interaction was confirmed by mass spectrometry of proteins pulled down from rat kidney papilla extract using a GST-AQP2 C-terminal fusion protein (GST-A2C) as a bait, by co-immunoprecipitation (IP) assays, and by direct binding assays using purified hsc70 and the GST-A2C. The direct interaction of AQP2 with hsc70 is partially inhibited by ATP, and the Ser-256 residue in the AQP2 C terminus is important for this direct interaction. Vasopressin stimulation in cells enhances the interaction of hsc70 with AQP2 in IP assays, and vasopressin stimulation in vivo induces an increased co-localization of hsc70 and AQP2 on the apical membrane of principal cells in rat kidney collecting ducts. Functional knockdown of hsc70 activity in AQP2 expressing cells results in membrane accumulation of AQP2 and reduced endocytosis of rhodamine-transferrin. Our data also show that AQP2 interacts with hsp70 in multiple in vitro binding assays. Finally, in addition to hsc70 and hsp70, AQP2 interacts with several other key components of the endocytotic machinery in co-IP assays, including clathrin, dynamin, and AP2. To summarize, we have identified the 70-kDa heat shock proteins as a AQP2 interactors and have shown for hsc70 that this interaction is involved in AQP2 trafficking.  相似文献   
63.
64.
研究了白凤桃果实贮藏过程中光照条件对果实成熟的影响。在7月12日(未熟期)和7月16日(硬熟期)采收果实,分别贮藏在光条件(白色荧光灯照明,果顶部光强为80μmol m~(-2)s~(-1))和暗条件中,室温均为25℃。硬熟期采收果实贮藏在光条件下,达到完熟期时,乙烯生成量较低。果肉的硬度在各个采收期,各种贮藏条件下均没有差别。光条件贮藏果实中花青苷含量较高。未熟期采收果实贮藏在光条件下时,可溶性固形物含量增加较多。光条件贮藏果实中天冬酰胺的下降比暗贮藏果实中更多。各时期采收的果实中,在光下贮藏时,果肉和果皮γ-癸内酯和γ-十二内酯的含量都明显增加。以上结果表明,白凤桃果实采收后在光下贮藏,可以明显改善果实的品质。  相似文献   
65.
66.
Genotoxic stress during DNA replication constitutes a serious threat to genome integrity and causes human diseases. Defects at different steps of DNA metabolism are known to induce replication stress, but the contribution of other aspects of cellular metabolism is less understood. We show that aminopeptidase P (APP1), a metalloprotease involved in the catabolism of peptides containing proline residues near their N-terminus, prevents replication-associated genome instability. Functional analysis of C. elegans mutants lacking APP-1 demonstrates that germ cells display replication defects including reduced proliferation, cell cycle arrest, and accumulation of mitotic DSBs. Despite these defects, app-1 mutants are competent in repairing DSBs induced by gamma irradiation, as well as SPO-11-dependent DSBs that initiate meiotic recombination. Moreover, in the absence of SPO-11, spontaneous DSBs arising in app-1 mutants are repaired as inter-homologue crossover events during meiosis, confirming that APP-1 is not required for homologous recombination. Thus, APP-1 prevents replication stress without having an apparent role in DSB repair. Depletion of APP1 (XPNPEP1) also causes DSB accumulation in mitotically-proliferating human cells, suggesting that APP1’s role in genome stability is evolutionarily conserved. Our findings uncover an unexpected role for APP1 in genome stability, suggesting functional connections between aminopeptidase-mediated protein catabolism and DNA replication.  相似文献   
67.
In many lineages of algae and land plants, photosynthesis was lost multiple times independently. Comparative analyses of photosynthetic and secondary nonphotosynthetic relatives have revealed the essential functions of plastids, beyond photosynthesis. However, evolutionary triggers and processes that drive the loss of photosynthesis remain unknown. Cryptophytes are microalgae with complex plastids derived from a red alga. They include several secondary nonphotosynthetic species with closely related photosynthetic taxa. In this study, we found that a cryptophyte, Cryptomonas borealis, is in a stage just prior to the loss of photosynthesis. Cryptomonas borealis was mixotrophic, possessed photosynthetic activity, and grew independent of light. The plastid genome of C. borealis had distinct features, including increases of group II introns with mobility, frequent genome rearrangements, incomplete loss of inverted repeats, and abundant small/medium/large-sized structural variants. These features provide insight into the evolutionary process leading to the loss of photosynthesis.  相似文献   
68.
The intestinal transport of irinotecan (CPT-11) and its active metabolite, SN-38, has been previously reported (K. Kobayashi et al., Int. J. Cancer, 83 (1999) 491-496). In the present study, the effect of the two major primary bile acids, cholic acid (CA) and taurocholic acid (TCA), on the uptake of CPT-11 and SN-38 by hamster intestinal epithelial cells was investigated. These two bile acids at concentrations up to 200 microM did not directly alter the cellular uptake of CPT-11 and SN-38. However, under physiologically acidic intestinal pH conditions, micelle formation induced by 20 mM TCA significantly reduced the cellular uptake of CPT-11 and SN-38 by 60% and 80%, respectively.  相似文献   
69.
Cytokines and various cellular stresses are known to activate c-Jun N-terminal kinase-1 (JNK1), which is involved in physiological function. Here, we investigate the activation of JNK1 by oxidative stress in H9c2 cells derived from rat cardiomyocytes. H(2)O(2) (100 microM) significantly induces the tyrosine phosphorylation of JNK1 with a peak 25 min after the stimulation. The amount of JNK1 protein remains almost constant during stimulation. Immunocytochemical observation shows that JNK1 staining in the nucleus is enhanced after H(2)O(2) stimulation. To clarify the physiological role of JNK1 activation under these conditions, we transfected antisense JNK1 DNA into H9c2 cells. The antisense DNA (2 microM) inhibits JNK1 expression by 80% as compared with expression in the presence of the sense DNA, and significantly blocks H(2)O(2)-induced cell death. Consistent with the decrease in cell number, we detected condensation of the nuclei, a hallmark of apoptosis, 3 h after H(2)O(2) stimulation in the presence of the sense DNA for JNK1. The antisense DNA of JNK1 inhibits the condensation of nuclei by H(2)O(2). Under these conditions, the H(2)O(2)-induced phosphorylation of proteins with molecular masses of 55, 72, and 78 kDa is blocked by treatment with the antisense DNA for JNK1 as compared with the sense DNA for JNK1. These findings suggest that JNK1 induces apoptotic cell death in response to H(2)O(2), and that the cell death may be involved in the phosphorylations of 55, 72, and 78 kDa proteins induced by JNK1 activation.  相似文献   
70.
Animals as well as plants defend themselves against invading pathogenic microorganisms utilizing cationic antimicrobial peptides, which rapidly kill various microbes without exerting toxicity against the host. Physicochemical peptide-lipid interactions provide attractive mechanisms for innate immunity. Many of these peptides form cationic amphipathic secondary structures, typically alpha-helices and beta-sheets, which can selectively interact with anionic bacterial membranes by the aid of electrostatic interactions. Rapid, peptide-induced membrane permeabilization is an effective mechanism of antimicrobial action. This review article summarizes interactions with lipid bilayers of magainins (alpha-helix) and tachyplesins (beta-sheet) discovered in frog skin and horseshoe crab hemolymph, respectively, as archetypes, emphasizing that the mode of interaction is strongly dependent on the physicochemical properties not only of the peptide, but also of the target membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号