首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   462篇
  免费   39篇
  2022年   5篇
  2021年   15篇
  2020年   4篇
  2018年   6篇
  2017年   5篇
  2016年   8篇
  2015年   16篇
  2014年   19篇
  2013年   17篇
  2012年   22篇
  2011年   16篇
  2010年   9篇
  2009年   10篇
  2008年   24篇
  2007年   29篇
  2006年   10篇
  2005年   17篇
  2004年   20篇
  2003年   9篇
  2002年   11篇
  2001年   10篇
  2000年   9篇
  1999年   14篇
  1998年   4篇
  1997年   7篇
  1996年   5篇
  1995年   5篇
  1993年   7篇
  1992年   15篇
  1991年   10篇
  1990年   15篇
  1989年   7篇
  1988年   4篇
  1987年   5篇
  1986年   8篇
  1985年   5篇
  1984年   4篇
  1982年   4篇
  1981年   20篇
  1980年   7篇
  1979年   3篇
  1978年   3篇
  1977年   4篇
  1976年   6篇
  1975年   6篇
  1973年   3篇
  1972年   5篇
  1971年   3篇
  1969年   3篇
  1968年   6篇
排序方式: 共有501条查询结果,搜索用时 31 毫秒
151.
Here, we show that a novel Rspo1-Wnt-Vegfc-Vegfr3 signaling pathway plays an essential role in developmental angiogenesis. A mutation in R-spondin1 (rspo1), a Wnt signaling regulator, was uncovered during a forward-genetic screen for angiogenesis-deficient mutants in the zebrafish. Embryos lacking rspo1 or the proposed rspo1 receptor kremen form primary vessels by vasculogenesis, but are defective in subsequent angiogenesis. Endothelial cell-autonomous inhibition of canonical Wnt signaling also blocks angiogenesis in vivo. The pro-angiogenic effects of Rspo1/Wnt signaling are mediated by Vegfc/Vegfr3(Flt4) signaling. Vegfc expression is dependent on Rspo1 and Wnt, and Vegfc and Vegfr3 are necessary to promote angiogenesis downstream from Rspo1-Wnt. As all of these molecules are expressed by the endothelium during sprouting stages, these results suggest that Rspo1-Wnt-VegfC-Vegfr3 signaling plays a crucial role as an endothelial-autonomous permissive cue for developmental angiogenesis.  相似文献   
152.
153.
154.
We report experiments to investigate the role of the physiologically relevant protein tyrosine kinase Lck in the ordered phosphorylation of the T-cell receptor zeta chain. Six synthetic peptides were designed based on the sequences of the immunoreceptor tyrosine-based activation motifs (ITAMs) of the zeta chain. Preliminary 1H-NMR studies of recombinant zeta chain suggested that it is essentially unstructured and therefore that peptide mimics would serve as useful models for investigating individual ITAM tyrosines. Phosphorylation kinetics were determined for each tyrosine by assaying the transfer of 32P by recombinant Lck on to each of the peptides. The rates of phosphorylation were found to depend on the location of the tyrosine, leading to the proposal that Lck phosphorylates the six zeta chain ITAM tyrosines in the order 1N (first) > 3N > 3C > 2N > 1C > 2C (last) as a result of differences in the amino-acid sequence surrounding each tyrosine. This proposal was then tested on cytosolic, recombinant T-cell receptor zeta chain. After in vitro phosphorylation by Lck, the partially phosphorylated zeta chain was digested with trypsin. Separation and identification of the zeta chain fragments using LC-MS showed, as predicted by the peptide phosphorylation studies, that tyrosine 1N is indeed the first to be phosphorylated by Lck. We conclude that differences in the amino-acid context of the six zeta chain ITAM tyrosines affect the efficiency of their phosphorylation by the kinase Lck, which probably contributes to the distinct patterns of phosphorylation observed in vivo.  相似文献   
155.
The adoption of cotton producing insecticidal proteins of Bacillus thuringiensis, commonly referred to as Bt cotton, around the world has proven to be beneficial for growers and the environment. The effectiveness of this important genetically-modified crop can be jeopardized by the development of resistance to Bt cotton by pests it is meant to control, with the possibility that this phenomenon could develop in one country and spread to another by means of insect migration. To preserve the effectiveness of this agricultural biotechnology, regulatory agencies have developed plans to mitigate the development of resistance, and research institutions constantly monitor for shifts in Bt-susceptibility in important pests. If Bt-resistance is detected, this finding needs to be corroborated by an independent laboratory according to current regulatory requirements; a process that presents numerous challenges. We investigated the biological activity of Bt-incorporated diet on Helicoverpa virescens L. after it was stored for several days at different temperatures. Diet stored up to nine days at different temperatures (-14 to 27 degrees C) produced the same biological effect on H. virescens as freshly-prepared diet. Elevating the temperature of Bt stock solution to 76 degrees C as compared to 26 degrees C yielded significantly higher reading of apparent Cry1Ac concentration from MVP II, but not enough to elicit a significant biological response when these stock solutions were incorporated into insect artificial diet. These findings are important particularly when the confirmation of resistance is done at a distant location, such as Mexico, or when diet is shared between laboratories, and must be stored for later use, as in the case of international collaboration.  相似文献   
156.
Skeletal muscle can bear a high load at constant length, or shorten rapidly when the load is low. This force-velocity relationship is the primary determinant of muscle performance in vivo. Here we exploited the quasi-crystalline order of myosin II motors in muscle filaments to determine the molecular basis of this relationship by X-ray interference and mechanical measurements on intact single cells. We found that, during muscle shortening at a wide range of velocities, individual myosin motors maintain a force of about 6 pN while pulling an actin filament through a 6 nm stroke, then quickly detach when the motor reaches a critical conformation. Thus we show that the force-velocity relationship is primarily a result of a reduction in the number of motors attached to actin in each filament in proportion to the filament load. These results explain muscle performance and efficiency in terms of the molecular mechanism of the myosin motor.  相似文献   
157.
The purpose of this study was to assess a novel technique for quantifying in vivo muscle protein metabolism and phenylalanine transport in septic patients and normal volunteers and thereby assess the influence of sepsis on muscle protein kinetics. In patients resuscitated from sepsis, blood flow and edema may influence the extent of muscle loss. Six adult patients septic from pneumonia underwent a study protocol consisting of infusion of isotopic phenylalanine, indocyanine green dye, and sodium bromide; biopsies of skeletal muscle; and sampling from the femoral artery, vein, and interstitial fluid. Study results demonstrate a substantial net catabolism of muscle, an accelerated flux of phenylalanine, and an increased leg blood flow for septic patients compared with normal volunteers. For septic patients and normal volunteers, the rate of phenylalanine transport through the interstitium was rate limiting for the movement of phenylalanine between vasculature and muscle. Measurements demonstrate a concentration gradient of phenylalanine favoring the net efflux of amino acids from the leg in the septic patients. Despite whole body edema, the extracellular fluid volume within muscle of septic patients was similar to normal. These findings demonstrate that the extent of muscle loss in critically ill patients results from the net increase in the rate of muscle protein breakdown, which subsequently drives amino acids through the interstitial compartment down their concentration gradient. Therefore, any effective therapy to correct illness-induced muscle catabolism should be directed at altering the rates of breakdown and synthesis of muscle protein and are not likely related to tissue edema.  相似文献   
158.
Small-molecule ligands that change the structure of a protein are likely to affect its function, whereas those causing no structural change are less likely to be functional. Wide-angle x-ray scattering (WAXS) can be easily carried out on proteins and small molecules in solution in the absence of chemical tags or derivatives. The authors demonstrate that WAXS is a sensitive probe of ligand binding to proteins in solution and can distinguish between nonfunctional and productive binding. Furthermore, similar ligand-binding modes translate into similar scattering patterns. This approach has high potential as a novel, generic, low-throughput assay for functional ligand binding.  相似文献   
159.
Anchoring proteins direct protein kinases and phosphoprotein phosphatases toward selected substrates to control the efficacy, context, and duration of neuronal phosphorylation events. The A-kinase anchoring protein AKAP79/150 interacts with protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2B (calcineurin) to modulate second messenger signaling events. In a mass spectrometry-based screen for additional AKAP79/150 binding partners, we have identified the Roundabout axonal guidance receptor Robo2 and its ligands Slit2 and Slit3. Biochemical and cellular approaches confirm that a linear sequence located in the cytoplasmic tail of Robo2 (residues 991–1070) interfaces directly with sites on the anchoring protein. Parallel studies show that AKAP79/150 interacts with the Robo3 receptor in a similar manner. Immunofluorescent staining detects overlapping expression patterns for murine AKAP150, Robo2, and Robo3 in a variety of brain regions, including hippocampal region CA1 and the islands of Calleja. In vitro kinase assays, peptide spot array mapping, and proximity ligation assay staining approaches establish that human AKAP79-anchored PKC selectively phosphorylates the Robo3.1 receptor subtype on serine 1330. These findings imply that anchored PKC locally modulates the phosphorylation status of Robo3.1 in brain regions governing learning and memory and reward.  相似文献   
160.
Verticillium wilt (VW) of Upland cotton (Gossypium hirsutum L.) is caused by the soil-borne fungal pathogen Verticillium dahlia Kleb. The availability of VW-resistant cultivars is vital for control of this economically important disease, but there is a paucity of Upland cotton breeding lines and cultivars with a high level of resistance to VW. In general, G. barbadense L. (source of Pima cotton) is more VW-resistant than Upland cotton. However, the transfer of VW resistance from G. barbadense to Upland cotton is challenging because of hybrid breakdown in the F2 and successive generations of interspecific populations. We conducted two replicated greenhouse studies (tests 1 and 2) to assess the heritability of VW resistance to a defoliating V. dahliae isolate and identify genetic markers associated with VW resistance in an Upland cotton recombinant inbred mapping population that has stable introgression from Pima cotton. Disease ratings at the seedling stage on several different days after the first inoculation (DAI) in test 1, as well as the percentages of infected and defoliated leaves at 2 DAI in test 2, were found to be low to moderately heritable, indicating the importance of a replicated progeny test in selection for VW resistance. With a newly constructed linkage map consisting of 882 simple sequence repeat, single nucleotide polymorphism, and resistance gene analog–amplified fragment length polymorphism marker loci, we identified a total of 21 quantitative trait loci (QTLs) on 11 chromosomes and two linkage groups associated with VW resistance at several different DAIs in greenhouse tests 1 and 2. The markers associated with the VW resistance QTLs will facilitate fine mapping and cloning of VW resistance genes and genomics-assisted breeding for VW-resistant cultivars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号