首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   543篇
  免费   36篇
  579篇
  2023年   2篇
  2022年   1篇
  2021年   10篇
  2020年   5篇
  2019年   10篇
  2018年   12篇
  2017年   11篇
  2016年   23篇
  2015年   16篇
  2014年   17篇
  2013年   24篇
  2012年   49篇
  2011年   58篇
  2010年   39篇
  2009年   24篇
  2008年   50篇
  2007年   30篇
  2006年   37篇
  2005年   29篇
  2004年   29篇
  2003年   23篇
  2002年   17篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   10篇
  1997年   6篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   2篇
  1973年   1篇
  1962年   1篇
排序方式: 共有579条查询结果,搜索用时 11 毫秒
71.
Biological networks are powerful tools for predicting undocumented relationships between molecules. The underlying principle is that existing interactions between molecules can be used to predict new interactions. Here we use this principle to suggest new protein-chemical interactions via the network derived from three-dimensional structures. For pairs of proteins sharing a common ligand, we use protein and chemical superimpositions combined with fast structural compatibility screens to predict whether additional compounds bound by one protein would bind the other. The method reproduces 84% of complexes in a benchmark, and we make many predictions that would not be possible using conventional modeling techniques. Within 19,578 novel predicted interactions are 7,793 involving 718 drugs, including filaminast, coumarin, alitretonin and erlotinib. The growth rate of confident predictions is twice that of experimental complexes, meaning that a complete structural drug-protein repertoire will be available at least ten years earlier than by X-ray and NMR techniques alone.  相似文献   
72.
Abstract Fanconi anemia (FA) is a rare cancer-prone genetic disorder characterized by progressive bone marrow failure, chromosomal instability and redox abnormalities. There is much biochemical and genetic data, which strongly suggest that FA cells experience increased oxidative stress. The present study was designed to elucidate if differences in oxidant state exist between control, idiopathic bone marrow failure (idBMF) and FA cells, and to analyze oxidant state of cells in FA heterozygous carriers as well. The results of the present study confirm an in vivo prooxidant state of FA cells and clearly indicate that FA patients can be distinguished from idBMF patients based on the oxidant state of cells. Female carriers of FA mutation also exhibited hallmarks of an in vivo prooxidant state behaving in a similar manner as FA patients. On the other hand, the oxidant state of cells in FA male carriers and idBMF families failed to show any significant difference vs. controls. We demonstrate that the altered oxidant state influences susceptibility of cells to apoptosis in both FA patients and female carriers. The results highlight the need for further research of the possible role of mitochondrial inheritance in the pathogenesis of FA.  相似文献   
73.
Human mesenchymal stem cells (hMSC) derived from bone marrow aspirates can form the basis for the in vitro cultivation of autologous tissue grafts and help alleviate the problems of immunorejection and disease transmission associated with the use of allografts. We explored the utility of hMSC cultured on protein scaffolds for tissue engineering of cartilage. hMSC were isolated, expanded in culture, characterized with respect to the expression of surface markers and ability for chondrogenic and osteogenic differentiation, and seeded on scaffolds. Four different scaffolds were tested, formed as a highly porous sponge made of: 1) collagen, 2) cross-linked collagen, 3) silk, and 4) RGD-coupled silk. Cell-seeded scaffolds were cultured for up to 4 weeks in either control medium (DMEM supplemented with 10% fetal bovine serum) or chondrogenic medium (control medium supplemented with chondrogenic factors). hMSC attachment, proliferation, and metabolic activity were markedly better on slowly degrading silk than on fast-degrading collagen scaffolds. In chondrogenic medium, hMSC formed cartilaginous tissues on all scaffolds, but the extent of chondrogenesis was substantially higher for hMSC cultured on silk as compared to collagen scaffolds. The deposition of glycosaminoglycan (GAG) and type II collagen and the expression of type II collagen mRNA were all higher for hMSC cultured on silk than on collagen scaffolds. Taken together, these results suggest that silk scaffolds are particularly suitable for tissue engineering of cartilage starting from hMSC, presumably due to their high porosity, slow biodegradation, and structural integrity.  相似文献   
74.
Neurodegenerative human diseases are caused by nerve cell death and anatomical changes in some brain regions. Molecular genetic studies of Drosophila showed that this organism can serve as a valuable test-system for conserved mechanisms underlying human nervous system disorders. Analysis of brain functions is possible when the mutants with disturbed functions are available. In this study, we have developed a unique collection of Drosophila melanogaster mutants with morphological and neurodegenerative changes in brain structure, which were induced by chemical mutagens.  相似文献   
75.
Polymyxin B (PMXB) blocks the action of insulin on glucose uptake in vitro. In vivo, it reverses hypoglycemia induced by exogenous insulin. Here we have treated mature male rats daily with PMXB over a period of two weeks. This therapy has decreased body weight by 11%, adipose fat mass by 46% and triglyceride levels by 39%, with no indication of liver or kidney toxicity. Two suboptimal parameters, however, were a decrease in food intake in the first week of treatment and some increase in fasting glucose levels. We have screened for PMXB-analogs having less associating affinity with rat-muscle phospholipids, and revealed that the same therapy using PMXB-derived peptide (nona-PMXB) is most optimal. This PMXB-analog is devoid of antibacterial activity and is four times less toxic than PMXB. Nona-PMXB therapy lower by 10, 32, 35 and 6% body weight gain, fat mass, circulating triglycerides and fasting glucose levels, respectively, in spite of normal or even elevated food intake in nona-PMXB treated rats. In summary, we found that nona-PMXB therapy is capable if inducing leanness in mature rats, particularly at the expense of decreasing fat-mass in adipose tissue. By and large, we suggest that lowering the action of insulin, on fat build-up solely, may be a therapeutically feasible task to fight with human adiposity in the future.  相似文献   
76.
A new method, applied for the first time in this research, was used for measurement of tooth extraction forces. The research has been done in a group of 50 examinees to whom the tooth extraction has been done with lower premolar forceps - forceps "13" and in the control group of 54 examinees in whom the tooth extraction has been done with upper incisive forceps - forceps "1". The measurement instrument registered the extraction forces values in both types of forceps. There was no difference in any parameters in these two groups except in used pressure. While using the forceps "13", a significantly lower tooth extraction force was measured than the force measured while using the forceps "1" (p < 0.001). This means that in clinical work we can already apply noticeably less force using the lower premolar forceps for the extraction of the upper incisors (in the moments of rotation up to 70%). These results are meaningful, because they lead to better and improved instrument solutions and working techniques.  相似文献   
77.
To perform effectively as a molecular chaperone, DnaK (Hsp70) necessitates the assistance of its DnaJ (Hsp40) co-chaperone partner, which efficiently stimulates its intrinsically weak ATPase activity and facilitates its interaction with polypeptide substrates. In this study, we address the function of the conserved glycine- and phenylalanine-rich (G/F-rich) region of the Escherichia coli DnaJ in the DnaK chaperone cycle. We show that the G/F-rich region is critical for DnaJ co-chaperone functions in vivo and that despite a significant degree of sequence conservation among the G/F-rich regions of Hsp40 homologs from bacteria, yeast, or humans, functional complementation in the context of the E. coli DnaJ is limited. Furthermore, we found that the deletion of the whole G/F-rich region is mirrored by mutations in the conserved Asp-Ile/Val-Phe (DIF) motif contained in this region. Further genetic and biochemical analyses revealed that this amino acid triplet plays a critical role in regulation of the DnaK chaperone cycle, possibly by modulating a crucial step subsequent to DnaK-mediated ATP hydrolysis.  相似文献   
78.
Most chemotherapeutic agents are blood-brain barrier (BBB) impermeants. HIV-1-derived TAT protein variants contain a transmembrane domain, which may enable them to cross the BBB and reach the brain. Here we synthesized CAYGRKKRRQRRR, a peptide containing a cysteine moiety attached to the N terminus of the transmembrane domain (C-TAT peptide), and studied its effects in an in vitro BBB model, which we found to reflect penetration by a receptor-independent pathway. Incubation of the brain capillary endothelial cell monolayer with 0.3–0.6 μmol/ml of this C-TAT peptide, for a period of 1–2 h, destabilizes brain capillary endothelial cell monolayer and introduces the ability of impermeant therapeutic agents including high molecular weight proteins to penetrate it substantially. The cysteinyl moiety at position 1 of the C-TAT peptide contributes largely to the destabilizing potency and the penetration efficacy of impermeant substances. The destabilizing effect was reversed using heparin. In summary, experimental conditions allowing a significant increase in entry of impermeant low and high molecular weight substances from the luminal (blood) to the abluminal side (brain) were found in an in vitro BBB model reflecting in vivo protein penetrability by a receptor-independent pathway.  相似文献   
79.
We describe the stabilization of human IgG1 Fc by an engineered interdomain disulfide bond at the C-terminal end of the molecule. Covalently interconnecting the C-termini of the CH(3) domains led to an increase of the melting temperatures by 5.6 and 9.1°C respectively as compared to CH(3) domains in the context of the wild-type Fc. Combined with a recently described additional intradomain disulfide bond, both novel disulfide bonds led to an increase of the Tm by about 18.1°C to 100.7°C. The interdomain disulfide bond had no impact on the thermal stability of the CH(2) domain. Far- and near-UV CD spectroscopy showed very similar overall CD profiles, indicating that secondary and tertiary structure of the Fc was not negatively affected. When introduced into an Fc fragment that had been engineered to bind to Her2/neu via a novel antigen binding site located at the C-terminus of the CH(3) domain, the novel inter- and intra-domain bonds also brought about a significant increase in thermostability. Using them in combination, the Tm of the CH(3) domain was raised by 18°C and thus restored to the Tm of the wild-type CH(3) domain. Importantly, antigen binding of the modified Fc was not affected by the engineered disulfide bonds.  相似文献   
80.
Sister chromatid cohesion, mediated by cohesin and regulated by Sororin, is essential for chromosome segregation. In mammalian cells, cohesion establishment and Sororin recruitment to chromatin-bound cohesin depends on the acetyltransferases Esco1 and Esco2. Mutations in Esco2 cause Roberts syndrome, a developmental disease in which mitotic chromosomes have a 'railroad' track morphology. Here, we show that Esco2 deficiency leads to termination of mouse development at pre- and post-implantation stages, indicating that Esco2 functions non-redundantly with Esco1. Esco2 is transiently expressed during S-phase when it localizes to pericentric heterochromatin (PCH). In interphase, Esco2 depletion leads to a reduction in cohesin acetylation and Sororin recruitment to chromatin. In early mitosis, Esco2 deficiency causes changes in the chromosomal localization of cohesin and its protector Sgo1. Our results suggest that Esco2 is needed for cohesin acetylation in PCH and that this modification is required for the proper distribution of cohesin on mitotic chromosomes and for centromeric cohesion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号