首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1495篇
  免费   121篇
  国内免费   1篇
  2023年   10篇
  2022年   28篇
  2021年   47篇
  2020年   18篇
  2019年   28篇
  2018年   27篇
  2017年   32篇
  2016年   38篇
  2015年   59篇
  2014年   69篇
  2013年   99篇
  2012年   113篇
  2011年   112篇
  2010年   53篇
  2009年   55篇
  2008年   81篇
  2007年   81篇
  2006年   66篇
  2005年   63篇
  2004年   62篇
  2003年   59篇
  2002年   37篇
  2001年   27篇
  2000年   20篇
  1999年   22篇
  1998年   13篇
  1997年   11篇
  1996年   16篇
  1995年   15篇
  1994年   14篇
  1992年   10篇
  1991年   22篇
  1990年   13篇
  1989年   12篇
  1988年   11篇
  1987年   9篇
  1986年   10篇
  1983年   7篇
  1982年   7篇
  1979年   9篇
  1978年   7篇
  1976年   8篇
  1975年   6篇
  1974年   7篇
  1973年   9篇
  1971年   6篇
  1970年   11篇
  1969年   6篇
  1968年   10篇
  1966年   6篇
排序方式: 共有1617条查询结果,搜索用时 15 毫秒
41.
42.
43.
This article highlights the research work carried out in the production of inulinases from various inulin substrates using strains of bacteria, yeast and fungi. Inulin is one of the numerous polysaccharides of plant origin that contains glucose or fructose. It is used as a substrate in industrial fermentation processes and in food industries due to its relatively cheap and abundant source for the microbiological production of high-fructose syrups, ethanol and acetone–butanol. The various oligosaccharides derived from inulin also find their application in the medical and dietary sector. The inulinase acts on the β-(2,1)-D-fructoside links in inulin releasing D-fructose. Hence, this article illustrates the capability of various microbes in hydrolyzing the carbon at its optimum nutrient concentration and operating condition towards inulinase production.  相似文献   
44.
Mycobacterium tuberculosis, the bacterial causative agent of tuberculosis, currently affects millions of people. The emergence of drug-resistant strains makes development of new antibiotics targeting the bacterium a global health priority. Pantothenate kinase, a key enzyme in the universal biosynthesis of the essential cofactor CoA, was targeted in this study to find new tuberculosis drugs. The biochemical characterizations of two new classes of compounds that inhibit pantothenate kinase from M. tuberculosis are described, along with crystal structures of their enzyme-inhibitor complexes. These represent the first crystal structures of this enzyme with engineered inhibitors. Both classes of compounds bind in the active site of the enzyme, overlapping with the binding sites of the natural substrate and product, pantothenate and phosphopantothenate, respectively. One class of compounds also interferes with binding of the cofactor ATP. The complexes were crystallized in two crystal forms, one of which is in a new space group for this enzyme and diffracts to the highest resolution reported for any pantothenate kinase structure. These two crystal forms allowed, for the first time, modeling of the cofactor-binding loop in both open and closed conformations. The structures also show a binding mode of ATP different from that previously reported for the M. tuberculosis enzyme but similar to that in the pantothenate kinases of other organisms.  相似文献   
45.
Staphylococcus epidermidis, a commensal of humans, secretes Esp protease to prevent Staphylococcus aureus biofilm formation and colonization. Blocking S. aureus colonization may reduce the incidence of invasive infectious diseases; however, the mechanism whereby Esp disrupts biofilms is unknown. We show here that Esp cleaves autolysin (Atl)-derived murein hydrolases and prevents staphylococcal release of DNA, which serves as extracellular matrix in biofilms. The three-dimensional structure of Esp was revealed by x-ray crystallography and shown to be highly similar to that of S. aureus V8 (SspA). Both atl and sspA are necessary for biofilm formation, and purified SspA cleaves Atl-derived murein hydrolases. Thus, S. aureus biofilms are formed via the controlled secretion and proteolysis of autolysin, and this developmental program appears to be perturbed by the Esp protease of S. epidermidis.  相似文献   
46.
47.
Covalent modification cycles are basic units and building blocks of posttranslational modification and cellular signal transduction. We systematically explore different spatial aspects of signal transduction in covalent modification cycles by starting with a basic temporal cycle as a reference and focusing on steady-state signal transduction. We consider, in turn, the effect of diffusion on spatial signal transduction, spatial analogs of ultrasensitive behavior, and the interplay between enzyme localization and substrate diffusion. Our analysis reveals the need to explicitly account for kinetics and diffusional transport (and localization) of enzymes, substrates, and complexes. It demonstrates a complex and subtle interplay between spatial heterogeneity, diffusion, and localization. Overall, examining the spatial dimension of covalent modification reveals that 1), there are important differences between spatial and temporal signal transduction even in this cycle; and 2), spatial aspects may play a substantial role in affecting and distorting information transfer in modules/networks that are usually studied in purely temporal terms. This has important implications for the systematic understanding of signaling in covalent modification cycles, pathways, and networks in multiple cellular contexts.  相似文献   
48.
49.

INTRODUCTION:

Non-syndromic tooth agenesis is a congenital anomaly with significant medical, psychological, and social ramifications. There is sufficient evidence to hypothesize that locus for this condition can be identified by candidate genes.

AIM OF THE STUDY:

The aim of this study was to test whether MSX1 671 T > C gene variant was involved in etiology of non-syndromic tooth agenesis in Raichur patients.

MATERIALS AND METHODS:

Blood samples were collected with informed consent from 50 subjects having non-syndromic tooth agenesis and 50 controls. Genomic deoxyribonucleic acid (DNA) was extracted from the blood samples, polymerase chain reaction (PCR) was performed, and restriction fragment length polymorphism (RFLP) was performed for digestion products that were evaluated.

RESULTS:

The results showed positive correlation between MSX1671 T > C gene variant and non-syndromic tooth agenesis in Raichur patients.

CONCLUSION:

MSX1 671 T > C gene variant may be a good screening marker for non-syndromic tooth agenesis in Raichur patients.  相似文献   
50.

BACKGROUND:

Mental retardation (MR) is a heterogeneous dysfunction of the central nervous system exhibiting complex phenotypes and has an estimated prevalence of 1-3% in the general population. However, in about 50% of the children diagnosed with any form of intellectual disability or developmental delay the cause goes undetected contributing to idiopathic intellectual disability.

MATERIALS AND METHODS:

A total of 122 children with developmental delay/MR were studied to identify the microscopic and submicroscopic chromosome rearrangements by using the conventional cytogenetics and multiplex ligation dependent probe amplification (MLPA) analysis using SALSA MLPA kits from Microbiology Research Centre Holland [MRC] Holland.

RESULTS:

All the recruited children were selected for this study, after thorough clinical assessment and metaphases prepared were analyzed by using automated karyotyping system. None was found to have chromosomal abnormality; MLPA analysis was carried out in all subjects and identified in 11 (9%) patients.

CONCLUSION:

Karyotype analysis in combination with MLPA assays for submicroscopic micro-deletions may be recommended for children with idiopathic MR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号