首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   354篇
  免费   33篇
  国内免费   1篇
  2022年   2篇
  2021年   7篇
  2020年   4篇
  2019年   8篇
  2018年   13篇
  2017年   9篇
  2016年   11篇
  2015年   12篇
  2014年   18篇
  2013年   20篇
  2012年   31篇
  2011年   37篇
  2010年   12篇
  2009年   13篇
  2008年   25篇
  2007年   21篇
  2006年   18篇
  2005年   11篇
  2004年   10篇
  2003年   14篇
  2002年   15篇
  2001年   5篇
  2000年   6篇
  1999年   6篇
  1998年   7篇
  1997年   2篇
  1996年   5篇
  1994年   4篇
  1993年   2篇
  1992年   4篇
  1990年   4篇
  1989年   5篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1979年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1967年   1篇
  1966年   2篇
  1965年   1篇
  1963年   2篇
  1959年   2篇
  1954年   1篇
  1951年   1篇
排序方式: 共有388条查询结果,搜索用时 140 毫秒
341.
Whereas antibipolar drug administration to rats reduces brain arachidonic acid turnover, excessive N-methyl-d-aspartate (NMDA) signaling is thought to contribute to bipolar disorder symptoms and may increase arachidonic acid turnover in rat brain phospholipids. To determine whether chronic NMDA would increase brain arachidonic acid turnover, rats were daily administered NMDA (25 mg/kg, ip) or vehicle for 21 days. In unanesthetized rats, on day 21, [1-(14)C]arachidonic acid was infused intravenously and arterial blood plasma was sampled until the animal was euthanized at 5 min and its microwaved brain was subjected to chemical and radiotracer analysis. Using equations from our in vivo fatty acid model, we found that compared with controls, chronic NMDA increased the net rate of incorporation of plasma unesterified arachidonic acid into brain phospholipids (25-34%) as well as the turnover of arachidonic acid within brain phospholipids (35-58%). These changes were absent at 3 h after a single NMDA injection. The changes, opposite to those after chronic administration of antimanic drugs to rats, suggest that excessive NMDA signaling via arachidonic acid may be a model of upregulated arachidonic acid turnover in brain phospholipids.  相似文献   
342.
Chronic N-Methyl-d-aspartate (NMDA) administration, a model of excitotoxicity, and chronic intracerebroventricular lipopolysaccharide infusion, a model of neuroinflammation, are reported to upregulate arachidonic acid incorporation and turnover in rat brain phospholipids as well as enzymes involved in arachidonic acid metabolism. This suggests cross-talk between signaling pathways of excitotoxicity and of neuroinflammation, involving arachidonic acid. To test whether chronic NMDA administrations to rats can upregulate brain markers of neuroinflammation, NMDA (25 mg/kg i.p.) or vehicle (1 ml saline/kg i.p.) was administered daily to adult male rats for 21 days. Protein and mRNA levels of cytokines and other inflammatory markers were measured in the frontal cortex using immunoblot and real-time PCR. Compared with chronic vehicle, chronic NMDA significantly increased protein and mRNA levels of interleukin-1beta, tumor necrosis factor alpha, glial fibrillary acidic protein and inducible nitric oxide synthase. Chronic NMDA receptor overactivation results in increased levels of neuroinflammatory markers in the rat frontal cortex, consistent with cross-talk between excitotoxicity and neuroinflammation. As both processes have been reported in a number of human brain diseases, NMDA receptor inhibitors might be of use in treating neuroinflammation in these diseases.  相似文献   
343.
CUGBP2, a translation inhibitor, induces colon cancer cells to undergo apoptosis. Mcl-1, an antiapoptotic Bcl-2 family protein, interferes with mitochondrial activation to inhibit apoptosis. Here, we have determined the effect of CUGBP2 on Mcl-1 expression. We developed a HCUG2 cell line by stably expressing CUGBP2 in the HCT-116 colon cancer cells. HCUG2 cells demonstrate decreased levels of proliferation and increased apoptosis, compared with HCT-116 cells. Flow cytometry analysis demonstrated higher levels of cells in the G(2)-M phase. Western blot analyses demonstrated that there was decreased Bcl-2 and Mcl-1 protein but increased expression of Bax, cyclin B1, and Cdc2. Immunocytochemistry also demonstrated increased levels of cyclin B1 and Cdc2 in the nucleus of HCUG2 cells. However, there was colocalization of phosphorylated histone H3 with transferase-mediated dUTP nick-end labeling (TUNEL). Furthermore, immunostaining for alpha-tubulin demonstrated that there was disorganization of microtubules. These data suggest that CUGBP2 expression in HCUG2 cells induces the cells to undergo apoptosis during the G(2)-M phase of the cell cycle. We next determined the mechanism of CUGBP2-mediated reduction in Mcl-1 expression. Mcl-1 protein, but not Mcl-1 mRNA, was lower in HCUG2 cells, suggesting translation inhibition. CUGBP2 binds to Mcl-1 3'-untranslated region (3'-UTR) both in vitro and in HCUG2 cells. Furthermore, CUGBP2 increased the stability of both endogenous Mcl-1 and luciferase mRNA containing the Mcl-1 3'-UTR. However, luciferase protein expression from the luciferase-Mcl-1 3'-UTR mRNA was suppressed. Taken together, these data demonstrate that CUGBP2 inhibits Mcl-1 expression by inhibiting Mcl-1 mRNA translation, resulting in driving the cells to apoptosis during the G(2) phase of the cell cycle.  相似文献   
344.
Implantation of peripheral blood aspirates induced towards chondrogenic differentiation upon genetic modification in sites of articular cartilage injury may represent a powerful strategy to enhance cartilage repair. Such a single‐step approach may be less invasive than procedures based on the use of isolated or concentrated MSCs, simplifying translational protocols in patients. In this study, we provide evidence showing the feasibility of overexpressing the mitogenic and pro‐anabolic insulin‐like growth factor I (IGF‐I) in human peripheral blood aspirates via rAAV‐mediated gene transfer, leading to enhanced proliferative and chondrogenic differentiation (proteoglycans, type‐II collagen, SOX9) activities in the samples relative to control (reporter rAAV‐lacZ) treatment over extended periods of time (at least 21 days, the longest time‐point evaluated). Interestingly, IGF‐I gene transfer also triggered hypertrophic, osteo‐ and adipogenic differentiation processes in the aspirates, suggesting that careful regulation of IGF‐I expression may be necessary to contain these events in vivo. Still, the current results demonstrate the potential of targeting human peripheral blood aspirates via therapeutic rAAV transduction as a novel, convenient tool to treat articular cartilage injuries.  相似文献   
345.

Background

Needle-free, painless and localized drug delivery has been a coveted technology in the area of biomedical research. We present an innovative way of trans-dermal vaccine delivery using a miniature detonation-driven shock tube device. This device utilizes~2.5 bar of in situ generated oxyhydrogen mixture to produce a strong shockwave that accelerates liquid jets to velocities of about 94 m/s.

Method

Oxyhydrogen driven shock tube was optimized for efficiently delivering vaccines in the intradermal region in vivo. Efficiency of vaccination was evaluated by pathogen challenge and host immune response. Expression levels of molecular markers were checked by qRT-PCR.

Results

High efficiency vaccination was achieved using the device. Post pathogen challenge with Mycobacterium tuberculosis, 100% survival was observed in vaccinated animals. Immune response to vaccination was significantly higher in the animals vaccinated using the device as compared to conventional route of vaccination.

Conclusion

A novel device was developed and optimized for intra dermal vaccine delivery in murine model. Conventional as well in-house developed vaccine strains were used to test the system. It was found that the vaccine delivery and immune response was at par with the conventional routes of vaccination. Thus, the device reported can be used for delivering live attenuated vaccines in the future.
  相似文献   
346.
Investigating the signals that regulate the function of dendritic cells (DC), the sentinels of the immune system, is critical to understanding the role of DC in the regulation of immune responses. Accumulating lines of evidence indicate that in addition to innate stimuli and T cell-derived signals, B lymphocytes exert a profound regulatory effect in vitro and in vivo on the Ag-presenting function of DC. The identification of B cells as a cellular source of cytokines, chemokines, and autoantibodies that are critically involved in the process of maturation, migration, and function of DC provides a rationale for immunotherapeutic intervention of autoimmune and inflammatory conditions by targeting B cells. Conversely, efficient cross-presentation of Ags by DC pulsed with immune complexes provides an alternative approach in the immunotherapy of cancer and infectious diseases.  相似文献   
347.
Inhibition of bacterial RNase P by aminoglycoside-arginine conjugates   总被引:3,自引:0,他引:3  
The potential of RNAs and RNA-protein (RNP) complexes as drug targets is currently being explored in various investigations. For example, a hexa-arginine derivative of neomycin (NeoR) and a tri-arginine derivative of gentamicin (R3G) were recently shown to disrupt essential RNP interactions between the trans-activator protein (Tat) and the Tat-responsive RNA (trans-activating region) in the human immunodeficiency virus (HIV) and also inhibit HIV replication in cell culture. Based on certain structural similarities, we postulated that NeoR and R3G might also be effective in disrupting RNP interactions and thereby inhibiting bacterial RNase P, an essential RNP complex involved in tRNA maturation. Our results indicate that indeed both NeoR and R3G inhibit RNase P activity from evolutionarily divergent pathogenic bacteria and do so more effectively than they inhibit partially purified human RNase P activity.  相似文献   
348.
Copper(II) complexes of a series of linear pentadentate ligands containing two benzimidazoles, two thioether sulfurs and a amine nitrogen, viz. N,N-bis{4-(2″-benzimidazolyl)(methyl)-3-thiabutyl}amine(L1), N,N-bis{4-(2″-benzimidazolyl)(methyl)-3-thiabutyl}N-methylamine (L2), 2,6-bis{4-(2″-benzimidazolyl)(methyl)-3-thiabutyl}pyridine(L3), N,N-bis{4-(2″-benzimidazolyl)-2-thiabutyl}amine (L4), N,N-bis{4-(2″-benzimidazolyl)-2-thiabutyl}N-methylamine (L5) and 2,6-bis{4-(2″-benzimidazolyl)-2-thiabutyl}-3pyridine (L6) have been isolated and characterized by electronic absorption and EPR spectroscopy and cyclic and differential pulse voltammetry. Of these complexes, [Cu(L1)](BF4)2 (1) and [Cu(L2)](BF4)2 (4) have been structurally characterized by X-ray crystallography. The coordination geometries around copper(II) in 1 and 4 are described as trigonal bipyramidal distorted square based pyramidal geometry (TBDSBP). The distorted CuN3S basal plane in them is comprised of amine nitrogen, one thioether sulphur and two benzimidazole nitrogens and the other thioether sulfur is axially coordinated. The ligand field spectra of all the complexes are consistent with a mostly square-based geometry in solution. The EPR spectra of complexes [Cu(L1)](BF4)2 (1), [Cu(L1)](NO3)2 (2), [Cu(L2)](BF4)2 (4) and [Cu(L3)](ClO4)2 (6) are consistent with two species indicating the dissociation/disproportionation of the complex species in solution. All the complexes exhibit an intense CT band in the range 305-395 nm and show a quasireversible to irreversible CuII/CuI redox process with relatively positive E1/2 values, which are consistent with the presence of two-coordinated thioether groups. The addition of N-methylimidazole (mim) replaces the coordinated thioether ligands in solution, as revealed from the negative shift (222-403 mV) in the CuII/CuI redox potential. The present study reveals that the effect of incorporating an amine nitrogen donor into CuN2S2 complexes is to generate an axial copper(II)-thioether coordination and also to enforce lesser trigonality on the copper(II) coordination geometry.  相似文献   
349.
The neutral pH optimum beta-glucosidases of mammalian liver and almonds are each capable of hydrolyzing a number of plant glucosides, including L-picein (p-hydroxyacetophenone-beta-D-glucoside) and prunasin (D-mandelonitrile-beta-D-glucoside). Taking advantage of the marked differences in the spectra of the substrate/product pairs of L-picein/p-hydroxyacetophenone and prunasin/mandelonitrile, we have devised spectrophotometric assays that permit the continuous monitoring at pH 7.0 of p-hydroxyacetophenone (piceol) release from L-picein by guinea pig hepatic cytosolic beta-glucosidase and mandelonitrile from prunasin by almond beta-glucosidase. When L-picein hydrolysis was monitored at 320 nm and prunasin at 282 nm, the molar absorption coefficients determined for their products, namely piceol and mandelonitrile, were 3200 and 1360 M-1 cm-1, respectively. The kinetic parameter Km and Vmax values obtained using these spectrophotometric procedures for the guinea pig liver cytosolic beta-glucosidase acting on L-picein were 0.88 mM and 5.29 x 10(5) units/mg protein and for the almond beta-glucosidase acting on prunasin, Km 1.1 mM and Vmax 5.24 x 10(6) units/mg protein. These values agreed well with previously reported values obtained using less convenient, discontinuous assay procedures.  相似文献   
350.
An investigation of the structure-affinity relationships for the binding of 4-(N,N-dimethylaminomethyl)-N(9)-arylsulfonyl-9H-1,2,3,4-tetrahydrocarbazoles (conformationally-constrained analogues of the benzenesulfonyltryptamine 5-HT(6) antagonist MS-245) at human 5-HT(6) receptors revealed that various arylsulfonyl substituents are tolerated and that the 4-(N,N-dimethylaminomethyl) group is not required for binding. In particular, N(9)-(4-aminobenzenesulfonyl)-9H-1,2,3,4-tetrahydrocarbazole (20, K(i)=29 nM) was found to bind with high affinity and represents the first member of a new structural class of agents with 5-HT(6) antagonist properties (pA(2)=7.0; cAMP hydrolysis assay).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号