首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   905篇
  免费   40篇
  国内免费   1篇
  946篇
  2023年   3篇
  2022年   9篇
  2021年   24篇
  2020年   15篇
  2019年   13篇
  2018年   22篇
  2017年   21篇
  2016年   24篇
  2015年   39篇
  2014年   63篇
  2013年   76篇
  2012年   61篇
  2011年   61篇
  2010年   53篇
  2009年   25篇
  2008年   44篇
  2007年   47篇
  2006年   47篇
  2005年   41篇
  2004年   42篇
  2003年   30篇
  2002年   30篇
  2001年   15篇
  2000年   14篇
  1999年   12篇
  1998年   6篇
  1997年   9篇
  1996年   9篇
  1995年   7篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   6篇
  1985年   5篇
  1984年   9篇
  1983年   3篇
  1982年   5篇
  1981年   6篇
  1980年   2篇
  1979年   5篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1969年   3篇
  1930年   1篇
排序方式: 共有946条查询结果,搜索用时 15 毫秒
91.
We designed a series of 25 3-(azol-1-yl)phenylpropanes which yielded 10 compounds (3, 4, 7, 8, 13, 14, 19, 21, 23, 26) that irreversibly immobilized 100% human sperm at 1% (w/v) concentration in 60 s; 12 compounds (8, 9, 15, 16, 19-21, 23-25, 27, 28) that showed potent microbicidal activity at 12.5-50 μg/mL against Trichomonas vaginalis; and 17 compounds (3-11, 13, 15, 19, 21, 23, 26, 28, 30) that exhibited potent anticandida activity with minimum inhibitory concentration (MIC) of 12.5-50 μg/mL. Almost all the compounds exhibited high level of safety towards normal vaginal flora (Lactobacillus) and human cervical (HeLa) cells in comparison to the marketed spermicide nonoxynol-9 (N-9). All the biological activities were evaluated in vitro. Two compounds (4, 8) with good safety profile exhibited multiple (spermicidal, antitrichomonas and anticandida) activities, warranting further lead optimization for furnishing a prophylactic vaginal contraceptive.  相似文献   
92.
Effects of several bivalent metal ions on the autoagglutination event in mature caprine epididymal sperm cells have been investigated using a chemically defined medium. This study demonstrates for the first time that Copper (Cu2+) ion (300 μM) has high specificity for autoagglutination of mature cauda-epididymal sperm. Head-to-head interaction of the male gametes is responsible for this event. Studies on the effect of various sugars reveal that the autoagglutinated cells can be dissociated specifically with neutralized sialic acid (50 mM), which also inhibits the sperm cell autoagglutination phenomenon. Blood serum protein fetuin, that contains terminal sialic acid residue, showed high efficacy for inhibiting this autoagglutination event at 4 μM concentration. However, asialofetuin is not capable of inhibiting this Cu2+-dependent cellular event. Mature sperm cells bound with caprine erythrocytes at their head region in presence of Cu2+ ion. The purified sperm membrane fraction isolated by aqueous two phase polymer method showed high efficacy to agglutinate erythrocytes. These sperm-erythrocyte interactions as well as sperm membrane induced haemagglutination were strongly blocked by neutralized sialic acid (50 mM). The results confirm the occurrence of unique Cu2+ dependent, sialic acid-specific lectin on the outer surface of a mammalian cell using caprine sperm as the model. The observed Cu2+-mediated cellular autoagglutination is caused by the interaction of the cell surface lectin with the lectin receptor on the surface of the neighboring homologous cell.  相似文献   
93.

This study investigates the effects of dietary Aeromonas veronii V03 supplementation on growth performances, innate immunity, and expression of immune-related genes in lymphoid organs of Cyprinus carpio and resistance to Aeromonas hydrophila infection. Fish were fed for 4 weeks with basal diet (BD; without probiotic), and experiment diet containing different doses of A. veronii V03 at 3.2 × 107 (DI) and 3.5 × 109 (DII) CFU g−1 of diet. At the end of the probiotic feeding trial, fish were challenged with A. hydrophila, and the percentage of survival rates was recorded over 7 days. Results revealed that fish fed with A. veronii V03 demonstrated a significant improvement in growth and enhancement of innate immunity, including respiratory burst, myeloperoxidase, and lysozyme activities, and total immunoglobulin level compared with BD fed to fish. Relatively, expression of cytokines (MyD88, IL-1β1, IL-8, and IL-10) and c- and g-type lysozymes were significantly up- and downregulated in lymphoid organs of fish. Moreover, dietary supplementation of A. veronii V03 exhibited significantly (p < 0.001) higher survival rates of DI (90%) and DII (96.66%) compared with BD (53.33%) fed fish against A. hydrophila infection. These findings help to understand the effects of probiotic A. veronii V03 administrated feed influences on growth and ailment resistance to A. hydrophila infection by regulating innate and systemic immunity in common carp fish.

  相似文献   
94.
We have isolated cell wall peptidoglycan associated proteins (CW-Pr) of Mycobacterium tuberculosis H37Ra by chemical treatment with trifluoromethanesulfonic acid:anisole (2:1), which further resolved into 71, 60 and 45 kDa proteins on SDS-PAGE. A study was carried out to investigate the immunoreactivity of these proteins with blood samples from 4 categories, including 15 tuberculous patients (TB), 5 tuberculous patients on ATT (TBT), 10 PPD non-reactive healthy controls (HPPD?) and 11 PPD reactive healthy controls (HPPD+). Comparing the proliferative responses to cell wall protein antigens, it was observed that the 71 kDa protein gave maximum stimulation with PBMCs from the TB and HPPD+ groups. The adherent PBMCs from the TB group also demonstrated enhanced phagocytosis, particularly in the presence of 71 and 45 kDa proteins, and the phagocytic index was significantly higher (P < 0.05) than the TBT group. However, PBMCs from of the groups recognized the 60 kDa cell wall antigen. Our results suggest that the 71 kDa protein from the cell wall of M. tuberculosis is highly immunogenic.  相似文献   
95.
Hydrogen is considered as a renewable energy source and it is also regarded as future fuel. Currently, hydrogen production through a biotechnological approach is a research priority. Hydrogenogens, a microbial species, are of significant interest to researchers because of their ability to produce biological hydrogen. Carboxydothermus hydrogenoformans Z-2901 is one among the hydrogenogens that can grow anaerobically by utilizing pyruvate as a carbon source, and can produce molecular hydrogen. In the present study, we performed an in silico kinetic simulation using the available Kyoto Encyclopedia of Genes and Genomes (KEGG) model and reconstructed pyruvate metabolism in C. hydrogenoformans Z-2901. During this metabolism, dissimilation of pyruvate leads to the formation of energy co-factors, such as ATP and NAD+/ NADH, and the level of these co-factors influences the specific growth rate of organism and hydrogen production. Our strategy for improving hydrogen production involves maximizing the ATP and NAD+ yield by modification of kinetic properties and adding new reactions in pyruvate metabolism through metabolic pathway reconstruction. Moreover, the influence of phosphoenol pyruvate carboxylase and pyruvate dehydrogenase enzyme concentration on cofactor productions was also simulated. The theoretical molar yield of ATP and NAD+ were obtained as 2.32 and 1.83 mM, respectively, from 1 mM/mg of phosphoenol pyruvate (PEP) utilization. A higher yield of ATP is achieved when the PEP level reaches 5 mM/mg. This work also suggests that PEP can be considered as an alternative substrate. In conclusion, the simulation results reported in this paper can be applied to design and evaluate strategies of strain construction for optimal hydrogen yield in C. hydrogenoformans.  相似文献   
96.
97.
We have recently reported that osteopontin (OPN) induces nuclear factor kappaB (NFkappaB)-mediated promatrix metalloproteinase-2 activation through IkappaBalpha/IKK signaling pathways and that curcumin (diferulolylmethane) down-regulates these pathways (Philip, S., and Kundu, G. C. (2003) J. Biol. Chem. 278, 14487-14497). However, the molecular mechanism by which upstream kinases regulate the OPN-induced NFkappaB activation and urokinase type plasminogen activator (uPA) secretion in human breast cancer cells is not well defined. Here we report that OPN induces the phosphatidylinositol 3'-kinase (PI 3'-kinase) activity and phosphorylation of Akt in highly invasive MDA-MB-231 and low invasive MCF-7 cells. The OPN-induced Akt phosphorylation was inhibited when cells were transfected with a dominant negative mutant of the p85 domain of PI 3-kinase (Deltap85) and enhanced when cells were transfected with an activated form of PI 3-kinase (p110CAAX), indicating that PI 3'-kinase is involved in Akt phosphorylation. OPN enhances the interaction between IkappaBalpha kinase (IKK) and phosphorylated Akt. OPN also induces NFkappaB activation through phosphorylation and degradation of IkappaBalpha by inducing the IKK activity. However, both pharmacological (wortmannin and LY294002) and genetic (Deltap85) inhibitors of PI 3'-kinase inhibited OPN-induced Akt phosphorylation, IKK activity, and NFkappaB activation through phosphorylation and degradation of IkappaBalpha. OPN also enhances uPA secretion, cell motility, and extracellular matrix invasion. Furthermore, cells transfected with Deltap85 or the super-repressor form of IkappaBalpha suppressed the OPN-induced uPA secretion and cell motility, whereas cells transfected with p110CAAX enhanced these effects. Pretreatment of cells with PI 3-kinase inhibitors or NFkappaB inhibitory peptide (SN-50) reduced the OPN-induced uPA secretion, cell motility, and invasion. To our knowledge, this is first report that OPN induces NFkappaB activity and uPA secretion by activating PI 3'-kinase/Akt/IKK-mediated signaling pathways and further demonstrates a functional molecular link between OPN-induced PI 3'-kinase-dependent Akt phosphorylation and NFkappaB-mediated uPA secretion, and all of these ultimately control the motility of breast cancer cells.  相似文献   
98.
Inclusion of cardiac troponin T (cTNT) exon 5 in embryonic muscle requires conserved flanking intronic elements (MSEs). ETR-3, a member of the CELF family, binds U/G motifs in two MSEs and directly activates exon inclusion in vitro. Binding and activation by ETR-3 are directly antagonized by polypyrimidine tract binding protein (PTB). We use dominant-negative mutants to demonstrate that endogenous CELF and PTB activities are required for MSE-dependent activation and repression in muscle and nonmuscle cells, respectively. Combined use of CELF and PTB dominant-negative mutants provides an in vivo demonstration that antagonistic splicing activities exist within the same cells. We conclude that cell-specific regulation results from the dominance of one among actively competing regulatory states rather than modulation of a nonregulated default state.  相似文献   
99.
100.
Our understanding of the PE/PPE family of proteins in M. tuberculosis (Mtb) pathogenesis is still evolving and their critical roles in the host immunomodulation are still in the discovery process. Earlier studies from our group have shown that TLR2-LRR domain plays an important role in regulating cytokine signalling by PPE proteins. The importance of TLR2-LRR domain 16–20 in the regulation of PPE17-induced pro-inflammatory signalling has been established recently. However, it is yet to find whether other PPE protein also targets the TLR2-LRR 16–20 domain for induction of pro-inflammatory responses. In the current study, we have explored the structural parameters and possible role of PPE65 in generating pro-inflammatory signalling molecules mediated through IRAK3 downstream of TLR2-LRR domain 16–20. This study conceptualizes the functional characteristics of PPE65 in infection condition and might possibly provide valuable information in exploring this protein as an immunomodulator in Mtb infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号