首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2229篇
  免费   274篇
  2016年   24篇
  2015年   40篇
  2014年   45篇
  2013年   56篇
  2012年   66篇
  2011年   62篇
  2010年   50篇
  2009年   45篇
  2008年   66篇
  2007年   58篇
  2006年   62篇
  2005年   53篇
  2004年   76篇
  2003年   56篇
  2002年   58篇
  2001年   71篇
  2000年   78篇
  1999年   56篇
  1998年   36篇
  1997年   35篇
  1996年   25篇
  1995年   26篇
  1994年   31篇
  1993年   35篇
  1992年   56篇
  1991年   60篇
  1990年   77篇
  1989年   68篇
  1988年   64篇
  1987年   72篇
  1986年   61篇
  1985年   82篇
  1984年   37篇
  1983年   41篇
  1982年   33篇
  1981年   43篇
  1980年   35篇
  1979年   40篇
  1978年   35篇
  1977年   44篇
  1976年   39篇
  1975年   27篇
  1974年   46篇
  1973年   30篇
  1972年   37篇
  1971年   24篇
  1969年   30篇
  1968年   22篇
  1967年   19篇
  1966年   19篇
排序方式: 共有2503条查询结果,搜索用时 15 毫秒
991.
992.
Cytochrome c (CYC) and 9 of the 13 subunits of cytochrome c oxidase (complex IV; COX) were previously shown to have accelerated rates of nonsynonymous substitution in anthropoid primates. Cytochrome b, the mtDNA encoded subunit of ubiquinol-cytochrome c reductase (complex III), also showed an accelerated nonsynonymous substitution rate in anthropoid primates but rate information about the nuclear encoded subunits of complex III has been lacking.We now report that phylogenetic and relative rates analysis of a nuclear encoded catalytically active subunit of complex III, the ironsulfur protein (ISP), shows an accelerated rate of amino acid replacement similar to cytochrome b. Because both ISP and subunit 9, whose function is not directly related to electron transport, are produced by cleavage into two subunits of the initial translation product of a single gene, it is probable that these two subunits of complex III have essentially identical underlying rates of mutation. Nevertheless, we find that the catalytically active ISP has an accelerated rate of amino acid replacement in anthropoid primates whereas the catalytically inactive subunit 9 does not.  相似文献   
993.
Microspatial analyses of the trace element composition of dental enamel are made possible using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Fine spatial resolution, multielement capabilities, and minimal sample destruction make this technique particularly well-suited for documenting the distribution of elements in sequentially calcifying layers of enamel. Because deciduous enamel forms from week 13 in utero up to 9 months postnatally (thereafter essentially becoming inert), the application of LA-ICP-MS allows for the retrospective measurement of prenatal and early postnatal trace-element uptake during a critical period of child development. In this study, we compared intra- and intertooth intensities of 25Mg, 57Fe, 66Zn, 68Zn, 88Sr, 138Ba, and 208Pb via LA-ICP-MS of 38 exfoliated deciduous incisors and canines donated by 36 participants in the Solís Valley Mexico Nutrition Collaborative Research Support Program (NCRSP). Pre- and postnatal comparisons within teeth showed significant increases (P < 0.001) and greater variation in the abundance of all isotopes in postnatal enamel, with the exception of a decrease in 25Mg (P < 0.001) and constant values for 88Sr (P = 0.681). Conversely, comparisons by tooth type and mouth quadrant revealed few significant differences between teeth of the same individual. We argue that more variation in the trace element composition of teeth occurs across developmental areas within a tooth than among different teeth of the same person. This study further demonstrates that sequentially calcifying areas of enamel have different chemical concentrations. The results support the use of microspatial analyses of enamel for understanding changes in nutrition, pollution, and residence.  相似文献   
994.
Heme oxygenase-1 (HO-1) represents a key defense mechanism against oxidative injury. Hyperglycemia has been linked to increased oxidative stress, leading to endothelial dysfunction, delayed cell replication, and enhanced apoptosis. The effect of streptozotocin (STZ)-induced diabetes on HO activity, HO-1 promoter activity, superoxide anion (O*-2, and the number of circulating endothelial cells was measured. The expression of HO-1/HO-2 protein was unchanged, but HO activity was decreased in aortas of diabetic rats compared with control (p < 0.05). High glucose decreased HO-1 promoter activity (p < 0.05). Hyperglycemia increased O*-2 and this increase was augmented with HO-1 inhibition and diminished with HO-1 upregulation (p < 0.05). Circulating endothelial cells were significantly higher in diabetic rats and were decreased or increased with administration of the HO-1 inducer (CoPP) or inhibitor (SnMP), respectively (p<0.05). In conclusion, HO-1 upregulation in diabetic rats brings about an increase in serum bilirubin, a reduction in O*-2 production, and a decrease in endothelial cell sloughing.  相似文献   
995.
SER virus, a paramyxovirus that is closely related to simian virus 5 (SV5), is unusual in that it fails to induce syncytium formation. The SER virus F protein has an unusually long cytoplasmic tail (CT), and it was previously observed that truncations or specific mutations of this domain result in enhanced syncytium formation. In addition to the long CT, the SER F protein has nine amino acid differences from the F protein of SV5. We previously observed only a partial suppression of fusion in a chimeric SV5 F protein with a CT derived from SER virus, indicating that these other amino acid differences between the SER and SV5 F proteins also play a role in regulating the fusion phenotype. To examine the effects of individual amino acid differences, we mutated the nine SER residues individually to the respective residues of the SV5 F protein. We found that most of the mutants were expressed well and were transported to the cell surface at levels comparable to that of the wild-type SER F protein. Many of the mutants showed enhanced lipid mixing, calcein transfer, and syncytium formation even in the presence of the long SER F protein CT. Some mutants, such as the I310 M, T438S, M489I, T516V, and N529K mutants, also showed fusion at lower temperatures of 32, 25, and 18 degrees C. The residue Asn529 plays a critical role in the suppression of fusion activity, as the mutation of this residue to lysine caused a marked enhancement of fusion. The effect of the N529K mutation on the enhancement of fusion by a previously described mutant, L539,548A, as well as by chimeric SV5/SER F proteins was also dramatic. These results indicate that activation to a fusogenic conformation is dependent on the interplay of residues in the ectodomain, the transmembrane domain, and the CT domain of paramyxovirus F proteins.  相似文献   
996.
We have examined the respective contribution of Heparan Sulfate Proteoglycans (HSPGs) and Frizzled (Fz) proteins in the establishment of the Wingless (Wg) morphogen gradient. From the analysis of mutant clones of sulfateless/N-deacetylase-sulphotransferase in the wing imaginal disc, we find that lack of Heparan Sulfate (HS) causes a dramatic reduction of both extracellular and intracellular Wg in receiving cells. Our studies, together with others [Kirkpatrick, C.A., Dimitroff, B.D., Rawson, J.M., Selleck, S.B., 2004. Spatial regulation of Wingless morphogen distribution and signalling by Dally-like protein. Dev. Cell (in press)], reveals that the Glypican molecule Dally-like Protein (Dlp) is associated with both negative and positive roles in Wg short- and long-range signaling, respectively. In addition, analyses of the two Fz proteins indicate that the Fz and DFz2 receptors, in addition to transducing the signal, modulate the slope of the Wg gradient by regulating the amount of extracellular Wg. Taken together, our analysis illustrates how the coordinated activities of HSPGs and Fz/DFz2 shape the Wg morphogen gradient.  相似文献   
997.
The Arabidopsis Shrunken Seed 1 (SSE1) gene encodes a homolog of the peroxisome biogenesis factor Pex16p, and a loss-of-function mutation in this gene alters seed storage composition. Two lines of evidence support a function for SSE1 in peroxisome biogenesis: the peroxisomal localization of a green fluorescent protein-SSE1 fusion protein and the lack of normal peroxisomes in sse1 mutant embryos. The green fluorescent protein-SSE1 colocalizes with the red fluorescent protein (RFP)-labeled peroxisomal markers RFP-peroxisome targeting signal 1 and peroxisome targeting signal 2-RFP in transgenic Arabidopsis. Each peroxisomal marker exhibits a normal punctate peroxisomal distribution in the wild type but not the sse1 mutant embryos. Further studies reported here were designed toward understanding carbon metabolism in the sse1 mutant. A time course study of dissected embryos revealed a dramatic rate decrease in oil accumulation and an increase in starch accumulation. Introduction of starch synthesis mutations into the sse1 background did not restore oil biosynthesis. This finding demonstrated that reduction in oil content in sse1 is not caused by increased carbon flow to starch. To identify the blocked steps in the sse1 oil deposition pathway, developing sse1 seeds were supplied radiolabeled oil synthesis precursors. The ability of sse1 to incorporate oleic acid, but not pyruvate or acetate, into triacylglycerol indicated a defect in the fatty acid biosynthetic pathway in this mutant. Taken together, the results point to a possible role for peroxisomes in the net synthesis of fatty acids in addition to their established function in lipid catabolism. Other possible interpretations of the results are discussed.  相似文献   
998.
999.
To explore whether the crenarchaeal consortium found in the rhizosphere is distinct from the assemblage of crenarchaeotes inhabiting bulk soil, PCR-single-stranded-conformation polymorphism (PCR-SSCP) profiles were generated for 76 plant samples collected from native environments. Divergent terrestrial plant groups including bryophytes (mosses), lycopods (club mosses), pteridophytes (ferns), gymnosperms (conifers), and angiosperms (seed plants) were collected for this study. Statistical analysis revealed significant differences between rhizosphere and bulk soil PCR-SSCP profiles (Hotelling paired T(2) test, P < 0.0001), suggesting that a distinct crenarchaeal consortium is associated with plants. In general, phylotype richness increased in the rhizosphere compared to the corresponding bulk soil, although the range of this increase was variable. Examples of a major change in rhizosphere (versus bulk soil) PCR-SSCP profiles were detected for all plant groups, suggesting that crenarchaeotes form associations with phylogenetically diverse plants in native environments. In addition, examples of minor to no detectable difference were found for all terrestrial plant groups, suggesting that crenarchaeal associations with plants are mediated by environmental conditions.  相似文献   
1000.
Mitochondria are both the power plant of the cell and a central integrator of signals that govern the lifespan, replication and death of the cell. Perhaps as a consequence, genes that encode components of the mitochondrial electron transport chain (ETC) are generally conserved. Therefore, it is surprising that many of these genes in anthropoid primates (New World monkeys, Old World monkeys and apes, including humans) have been major targets of darwinian positive selection. Sequence comparisons have provided evidence that marked increases of non-synonymous substitution rates occurred in anthropoid ETC genes that encode subunits of Complex III and IV, and the electron carrier molecule cytochrome c (CYC). Two important questions are: (i) how has evolution altered ETC function? and; (ii) how might functional changes in the ETC be linked to evolution of an expanded neocortical brain?  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号