首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   34篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2017年   2篇
  2015年   9篇
  2014年   5篇
  2013年   7篇
  2012年   10篇
  2011年   9篇
  2010年   4篇
  2009年   7篇
  2008年   2篇
  2007年   5篇
  2006年   6篇
  2005年   5篇
  2004年   11篇
  2003年   7篇
  2002年   7篇
  2001年   7篇
  2000年   2篇
  1999年   8篇
  1998年   7篇
  1997年   6篇
  1996年   7篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   6篇
  1991年   7篇
  1990年   8篇
  1989年   5篇
  1988年   6篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1969年   1篇
  1912年   1篇
排序方式: 共有220条查询结果,搜索用时 968 毫秒
21.
Molecules in the midgut of the tsetse fly (Diptera: Glossinidiae) are thought to play an important role in the life cycle of African trypanosomes by influencing their initial establishment in the midgut and subsequent differentiation events that ultimately affect parasite transmission. It is thus important to determine the molecular composition of the tsetse midgut to aid in understanding disease transmission by these medically important insect vectors. Here, we report that the most abundant protein in the midguts of teneral (unfed) Glossina morsitans morsitans is a 60 kDa molecular chaperone of bacterial origin. Two species of symbiotic bacteria reside in the tsetse midgut, Sodalis glossinidius and Wigglesworthia glossinidia. To determine the exact origin of the 60 kDa molecule, a protein microchemical approach involving two-dimensional (2-D) gel electrophoresis and mass spectrometry was used. Peptide mass maps were compared to virtual peptide maps predicted for S. glossinidius and W. glossinidia 60 kDa chaperone sequences. Four signature peptides were identified, revealing that the source of the chaperone was W. glossinidia. Comparative 2-D gel electrophoresis and immunoblotting further revealed that this protein was localized to the bacteriome and not the distal portion of the tsetse midgut. The possible function of this highly abundant endosymbiont chaperone in the tsetse midgut is discussed.  相似文献   
22.
Regulated switching of the mutually exclusive exons 2 and 3 of alpha-tropomyosin (TM) involves repression of exon 3 in smooth muscle cells. Polypyrimidine tract-binding protein (PTB) is necessary but not sufficient for regulation of TM splicing. Raver1 was identified in two-hybrid screens by its interactions with the cytoskeletal proteins actinin and vinculin, and was also found to interact with PTB. Consistent with these interactions raver1 can be localized in either the nucleus or cytoplasm. Here we show that raver1 is able to promote the smooth muscle-specific alternative splicing of TM by enhancing PTB-mediated repression of exon 3. This activity of raver1 is dependent upon characterized PTB-binding regulatory elements and upon a region of raver1 necessary for interaction with PTB. Heterologous recruitment of raver1, or just its C-terminus, induced very high levels of exon 3 skipping, bypassing the usual need for PTB binding sites downstream of exon 3. This suggests a novel mechanism for PTB-mediated splicing repression involving recruitment of raver1 as a potent splicing co-repressor.  相似文献   
23.
Gooding, R. H., and McIntyre, G. S. 1998.Glossina morsitans morsitansandGlossina palpalis palpalis: Dosage compensation raises questions about the Milligan model for control of trypanosome development.Experimental Parasitology90, 244–249. Evidence that dosage compensation occurs in tsetse flies was obtained by comparing the activities of X chromosome-linked enzymes, arginine phosphokinase and glucose-6-phosphate dehydrogenase inGlossina m. morsitansand hexokinase and phosphoglucomutase inGlossina p. palpalis, with the activity of an autosome-linked enzyme, malate dehydrogenase, in each species. The shortcomings of the X chromosome model for the control ofTrypanozoonmaturation in tsetse are discussed in light of these findings and previously published reports on the lack of fitness effects of matureTrypanozooninfections in tsetse and on published results on antitrypanosomal factors in male and female tsetse flies.  相似文献   
24.
Splicing of exons 2 and 3 of a-tropomyosin (TM) involves mutually exclusive selection of either exon 3, which occurs in most cells, or of exon 2 in smooth muscle (SM) cells. The SM-specific selection of exon 2 results from the inhibition of exon 3. At least two essential cis-acting elements are required for exon 3 inhibition, the upstream and downstream regulatory elements (URE and DRE). These elements are essential for repression of TM exon 3 in SM cells, and also mediate a low level of repression of exon 3 in an in vitro 5' splice site competition assay in HeLa extracts. Here, we show that the DRE consists of at least two discrete components, a short region containing a number of UGC motifs, and an essential pyrimidine-rich tract (DY). We show that the specific sequence of the DY element is important and that DY is able to bind to factors in HeLa nuclear extracts that mediate a low background level of exon 3 skipping. Deletion of a sequence within DY identified as an optimal binding site for PTB impairs (1) regulation of splicing in vivo, (2) skipping of exon 3 in an in vitro 5' splice site competition, (3) the ability of DY competitors to affect the 5' splice site competition in vitro, and (4) binding of PTB to DY. Addition of recombinant PTB to in vitro splicing reactions is able to partially reverse the effects of the DY competitor RNA. The data are consistent with a model for regulation of TM splicing that involves the participation of both tissue-specific and general inhibitory factors and in which PTB plays a role in repressing both splice sites of exon 3.  相似文献   
25.
Polypyrimidine tract binding protein (PTB) acts as a regulatory repressor of a large number of alternatively spliced exons, often requiring multiple binding sites in order to repress splicing. In one case, cooperative binding of PTB has been shown to accompany repression. The SM exon of the alpha-actinin pre-mRNA is also repressed by PTB, leading to inclusion of the alternative upstream NM exon. The SM exon has a distant branch point located 386 nt upstream of the exon with an adjacent 26 nucleotide pyrimidine tract. Here we have analyzed PTB binding to the NM and SM exon region of the alpha-actinin pre-mRNA. We find that three regions of the intron bind PTB, including the 3' end of the polypyrimidine tract (PPT) and two additional regions between the PPT and the SM exon. The downstream PTB binding sites are essential for full repression and promote binding of PTB to the PPT with a consequent reduction in U2AF(65) binding. Our results are consistent with a repressive mechanism in which cooperative binding of PTB to the PPT competes with binding of U2AF(65), thereby specifically blocking splicing of the SM exon.  相似文献   
26.
27.
The utility of the decimal growth stage (DGS) scoring system for cereals is reviewed. The DGS is the most widely used scale in academic and commercial applications because of its comprehensive coverage of cereal developmental stages, the ease of use and definition provided and adoption by official agencies. The DGS has demonstrable and established value in helping to optimise the timing of agronomic inputs, particularly with regard to plant growth regulators, herbicides, fungicides and soluble nitrogen fertilisers. In addition, the DGS is used to help parameterise crop models, and also in understanding the response and adaptation of crops to the environment. The value of the DGS for increasing precision relies on it indicating, to some degree, the various stages in the development of the stem apex and spike. Coincidence of specific growth stage scores with the transition of the apical meristem from a vegetative to a reproductive state, and also with the period of meiosis, is unreliable. Nonetheless, in pot experiments it is shown that the broad period of booting (DGS 41–49) appears adequate for covering the duration when the vulnerability of meiosis to drought and heat stress is exposed. Similarly, the duration of anthesis (61–69) is particularly susceptible to abiotic stresses: initially from a fertility perspective, but increasingly from a mean grain weight perspective as flowering progresses to DGS 69 and then milk development. These associations with DGS can have value at the crop level of organisation: for interpreting environmental effects, and in crop modelling. However, genetic, biochemical and physiological analysis to develop greater understanding of stress acclimation during the vegetative state, and tolerance at meiosis, does require more precision than DGS can provide. Similarly, individual floret analysis is needed to further understand the genetic basis of stress tolerance during anthesis.  相似文献   
28.
Over the past thirty years, a global occurrence of sexual aberrationhas occurred whereby females among populations of prosobranchsnails exhibit male sex characteristics. This condition, calledimposex, has been causally associated with exposure to the biocidetributyltin. Tributyltin-exposed, imposex snails typically haveelevated levels of testosterone which have led to the postulatethat this endocrine dysfunction is responsible for imposex.This overview describes recent evidence that supports this postulate.Gastropods maintain circulating testosterone levels and administrationof testosterone to females or castrates stimulates male sexdifferentiation in several snail species. Studies in the mudsnail (Ilyanassa obsoleta) have shown that gastropods utilizea unique strategy for regulating free testosterone levels. Excesstestosterone is converted to fatty acid esters by the actionof a testosterone-inducible, high capacity/low affinity enzyme,acyl-CoA:testosterone acyl transferase, and stored within theorganisms. Free testosterone levels are regulated during thereproductive cycle apparently due to changes in esterification/desterificationsuggesting that testosterone functions in the reproductive cycleof the organisms. Testosterone esterification provides a uniquetarget in the testosterone regulatory machinery of snails thatis altered by tributyltin. Indeed, imposex and free testosteronelevels were elevated in field collected snails containing hightin levels, while testosterone-fatty acid ester pools were reducedin these organisms. These observations indicate that tributyltinelevates free testosterone by reducing the retention of testosteroneas fatty acid-esters. This endocrine effect of tributyltin maybe responsible for imposex.  相似文献   
29.
30.
Current endeavors in the type 2 diabetes (T2D) field include gaining a better understanding of extracellular signaling pathways that regulate pancreatic islet function. Recent data suggest that both Bmp and Wnt pathways are operative in pancreatic islets and play a positive role in insulin secretion and glucose homeostasis. Our laboratory found the dual Bmp and Wnt antagonist Sostdc1 to be upregulated in a mouse model of islet dysmorphogenesis and nonimmune-mediated lean diabetes. Because Bmp signaling has been proposed to enhance β-cell function, we evaluated the role of Sostdc1 in adult islet function using animals in which Sostdc1 was globally deleted. While Sostdc1-null animals exhibited no pancreas development phenotype, a subset of mutants exhibited enhanced insulin secretion and improved glucose homeostasis compared with control animals after 12-wk exposure to high-fat diet. Loss of Sostdc1 in the setting of metabolic stress results in altered expression of Bmp-responsive genes in islets but did not affect expression of Wnt target genes, suggesting that Sostdc1 primarily regulates the Bmp pathway in the murine pancreas. Furthermore, our data indicate that removal of Sostdc1 enhances the downregulation of the closely related Bmp inhibitors Ctgf and Gremlin in islets after 8-wk exposure to high-fat diet. These data imply that Sostdc1 regulates expression of these inhibitors and provide a means by which Sostdc1-null animals show enhanced insulin secretion and glucose homeostasis. Our studies provide insights into Bmp pathway regulation in the endocrine pancreas and reveal new avenues for improving β-cell function under metabolic stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号