首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   451篇
  免费   45篇
  496篇
  2021年   8篇
  2018年   6篇
  2017年   5篇
  2016年   6篇
  2015年   14篇
  2014年   17篇
  2013年   18篇
  2012年   18篇
  2011年   16篇
  2010年   14篇
  2009年   13篇
  2008年   13篇
  2007年   8篇
  2006年   13篇
  2005年   9篇
  2004年   13篇
  2003年   8篇
  2002年   6篇
  2001年   9篇
  1999年   12篇
  1998年   11篇
  1997年   4篇
  1996年   8篇
  1995年   6篇
  1994年   9篇
  1993年   6篇
  1992年   4篇
  1991年   9篇
  1990年   12篇
  1989年   5篇
  1988年   7篇
  1987年   12篇
  1986年   7篇
  1985年   10篇
  1984年   5篇
  1983年   4篇
  1982年   4篇
  1981年   7篇
  1980年   7篇
  1979年   7篇
  1978年   8篇
  1977年   11篇
  1976年   6篇
  1974年   8篇
  1973年   4篇
  1971年   5篇
  1970年   4篇
  1931年   5篇
  1930年   5篇
  1911年   4篇
排序方式: 共有496条查询结果,搜索用时 0 毫秒
11.

Background

It is now recognized that enzymatic or chemical side-reactions can convert normal metabolites to useless or toxic ones and that a suite of enzymes exists to mitigate such metabolite damage. Examples are the reactive imine/enamine intermediates produced by threonine dehydratase, which damage the pyridoxal 5''-phosphate cofactor of various enzymes causing inactivation. This damage is pre-empted by RidA proteins, which hydrolyze the imines before they do harm. RidA proteins belong to the YjgF/YER057c/UK114 family (here renamed the Rid family). Most other members of this diverse and ubiquitous family lack defined functions.

Results

Phylogenetic analysis divided the Rid family into a widely distributed, apparently archetypal RidA subfamily and seven other subfamilies (Rid1 to Rid7) that are largely confined to bacteria and often co-occur in the same organism with RidA and each other. The Rid1 to Rid3 subfamilies, but not the Rid4 to Rid7 subfamilies, have a conserved arginine residue that, in RidA proteins, is essential for imine-hydrolyzing activity. Analysis of the chromosomal context of bacterial RidA genes revealed clustering with genes for threonine dehydratase and other pyridoxal 5''-phosphate-dependent enzymes, which fits with the known RidA imine hydrolase activity. Clustering was also evident between Rid family genes and genes specifying FAD-dependent amine oxidases or enzymes of carbamoyl phosphate metabolism. Biochemical assays showed that Salmonella enterica RidA and Rid2, but not Rid7, can hydrolyze imines generated by amino acid oxidase. Genetic tests indicated that carbamoyl phosphate overproduction is toxic to S. enterica cells lacking RidA, and metabolomic profiling of Rid knockout strains showed ten-fold accumulation of the carbamoyl phosphate-related metabolite dihydroorotate.

Conclusions

Like the archetypal RidA subfamily, the Rid2, and probably the Rid1 and Rid3 subfamilies, have imine-hydrolyzing activity and can pre-empt damage from imines formed by amine oxidases as well as by pyridoxal 5''-phosphate enzymes. The RidA subfamily has an additional damage pre-emption role in carbamoyl phosphate metabolism that has yet to be biochemically defined. Finally, the Rid4 to Rid7 subfamilies appear not to hydrolyze imines and thus remain mysterious.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1584-3) contains supplementary material, which is available to authorized users.  相似文献   
12.
Transitional cell carcinoma (TCC), the most common cancer of the urinary bladder in dogs, is usually diagnosed at an advanced disease stage with limited response to chemotherapy. Commercial screening tests lack specificity and current diagnostic procedures are invasive. A proof of concept pilot project for analyzing the canine urinary proteome as a noninvasive diagnostic tool for TCC identification was conducted. Urine was collected from 12 dogs in three cohorts (healthy, urinary tract infection, TCC) and analyzed using liquid chromatography tandem mass spectrometry. The presence of four proteins (macrophage capping protein, peroxiredoxin 5, heterogeneous nuclear ribonucleoproteins A2/B, and apolipoprotein A1) was confirmed via immunoblot. Of the total 379 proteins identified, 96 were unique to the TCC group. A statistical model, designed to evaluate the accuracy of this multiplex biomarker approach for diagnosis of TCC, predicted the presence of disease with 90% accuracy.  相似文献   
13.
14.
15.
Understanding the rates and causes of mortality in wild chimpanzee populations has important implications for a variety of fields, including wildlife conservation and human evolution. Because chimpanzees are long-lived, accurate mortality data requires very long-term studies. Here, we analyze 47 years of data on the Kasekela community in Gombe National Park. Community size fluctuated between 38 and 60, containing 60 individuals in 2006. From records on 220 chimpanzees and 130 deaths, we found that the most important cause of mortality in the Kasekela community was illness (58% of deaths with known cause), followed by intraspecific aggression (20% of deaths with known cause). Previous studies at other sites also found that illness was the primary cause of mortality and that some epidemic disease could be traced to humans. As at other study sites, most deaths due to illness occurred during epidemics, and the most common category of disease was respiratory. Intraspecific lethal aggression occurred within the community, including the killing of infants by both males and females, and among adult males during the course of dominance-related aggression. Aggression between communities resulted in the deaths of at least five adult males and two adult females in the Kasekela and Kahama communities. The frequency of intercommunity violence appears to vary considerably among sites and over time. Intercommunity lethal aggression involving the Kasekela community was observed most frequently during two periods. Other less common causes of death included injury, loss of mother, maternal disability, and poaching.  相似文献   
16.
17.
18.
19.
Goodall JJ  Chen GJ  Page MG 《Biochemistry》2004,43(15):4583-4591
The peptidyl-tRNA hydrolase (Pth) enzyme plays an essential role in recycling tRNA from peptidyl-tRNA that has prematurely dissociated from the ribosome. In this study of Escherichia coli Pth, the critical role of histidine 20 was investigated by site-directed mutagenesis, stopped-flow kinetic measurements, and chemical modification. The histidine residue at position 20 is known to play an important role in the hydrolysis reaction, but stopped-flow fluorescence measurements showed that, although the His20Asn Pth mutant enzyme was unable to hydrolyze the substrate, the enzyme retained the ability to bind peptidyl-tRNA. Chemical modification of Pth with diethyl pyrocarbonate (DEPC) showed that a residue, with a pK(a) value of 6.3, was essential for substrate hydrolysis and that the stoichiometry of inhibition was 0.70 +/- 0.06 mol of DEPC/mol of enzyme, indicating that modification of only a single residue by DEPC was responsible for the loss of activity. Parallel chemical modification studies with the His20Asn and Asp93Asn mutant enzymes showed that this essential residue was His20. These studies indicate that histidine 20 acts as the catalytic base in the hydrolysis of peptidyl-tRNA by Pth.  相似文献   
20.
Vascular endothelial growth factor (VEGF) is a key regulator of developmental, physiological, and tumor angiogenesis. Upregulation of VEGF expression by hypoxia appears to be a critical step in the neovascularization of solid cancers. The VEGF mRNA is intrinsically labile, but in response to hypoxia the mRNA is stabilized. We have systematically analyzed the regions in the VEGF mRNA that are responsible for its lability under normoxic conditions and for stabilization in response to hypoxia. We find that the VEGF mRNA not only contains destabilizing elements in its 3' untranslated region (3'UTR), but also contains destabilizing elements in the 5'UTR and coding region. Each region can independently promote mRNA degradation, and together they act additively to effect rapid degradation under normoxic conditions. Stabilization of the mRNA in response to hypoxia is completely dependent on the cooperation of elements in each of the 5'UTR, coding region, and 3'UTR. Combinations of any of two of these three regions were completely ineffective in responding to hypoxia, whereas combining all three regions allowed recapitulation of the hypoxic stabilization seen with the endogenous VEGF mRNA. We conclude that multiple regions in the VEGF mRNA cooperate both to ensure the rapid degradation of the mRNA under normoxic conditions and to allow stabilization of the mRNA in response to hypoxia. Our findings highlight the complexity of VEGF gene expression and also reveal a mechanism of gene regulation that could become the target for strategies of therapeutic intervention.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号