首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   519篇
  免费   33篇
  国内免费   1篇
  2022年   1篇
  2021年   13篇
  2020年   7篇
  2019年   5篇
  2018年   8篇
  2017年   8篇
  2016年   22篇
  2015年   31篇
  2014年   39篇
  2013年   38篇
  2012年   49篇
  2011年   51篇
  2010年   24篇
  2009年   28篇
  2008年   34篇
  2007年   29篇
  2006年   18篇
  2005年   25篇
  2004年   48篇
  2003年   19篇
  2002年   18篇
  2001年   8篇
  2000年   4篇
  1999年   11篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1973年   1篇
排序方式: 共有553条查询结果,搜索用时 15 毫秒
51.
52.
The baculovirus expression vector system (BEVS) is one of the powerful insect cell systems for heterologous protein expression. However, over-expression of heterologous proteins in this system sometimes results in protein misfolding and aggregation because of insufficient levels of folding catalysts. In previous study using the differential screening (DS) method, we isolated only 40 differentially expressed genes after treatment with tunicamycin, an unfolded protein response (UPR) inducer. To isolate more protein folding catalysts from insect, we performed suppressive subtractive hybridization (SSH) with untreated and tunicamycin-treated Bm5 cell lines in this study. We could isolate 366 differentially expressed clones by SSH method and produced expressed sequence tags (ESTs). ESTs included the UPR pathway-related genes involved in protein folding, including heat shock proteins, molecular chaperones, foldases, as well as glycosylation and secretory pathway related genes. Identification of the tunicamycin responsive genes using SSH provides more information about the UPR-related genes in insect cells, and will facilitate modifications of the protein folding pathway in the ER to improve heterologous protein expression.  相似文献   
53.
Kim MK  Fibrianto YH  Oh HJ  Jang G  Kim HJ  Lee KS  Kang SK  Lee BC  Hwang WS 《Theriogenology》2005,63(5):1342-1353
Unlike in other domestic animals, in vitro maturation (IVM) of canine oocytes has had limited success. The present study investigated the effect of the estrous cycle and estradiol-17beta (E2) or progesterone (P4) supplementation on in vitro nuclear maturation of canine oocytes recovered from domestic dog ovaries in various reproductive states (follicular, luteal or anestrous stages). Oocytes were cultured in serum-free tissue culture medium (TCM)-199 supplemented with various concentrations of E2 (Exp. 1: 0, 0.1, 1.0 or 2.0 microg/ml) or P4 (Exp. 2; 0, 0.5, 1.0 or 2.0 microg/ml) for 72 h to determine the effective concentration of hormones. In Exp. 3, in order to investigate the synergistic effect of E2 and P4 supplementation, three groups of oocytes were cultured with 2 microg/ml E2 plus various concentrations of P4 (0, 0.5, 1.0 or 2.0 microg/ml). As results, the rate of maturation to metaphase II (MII) stage was significantly higher (P < 0.05) in oocytes from the follicular stage supplemented with 2 microg/ml E2 (14.7%) compared to the other groups (1.5-8.2%). Significantly higher (P < 0.05) maturation rate to MII stage was observed in oocytes from the follicular stage supplemented with 1.0 (10.0%) or 2.0 microg/ml (10.8%) P4 compared to the other groups (0-4.8%). Furthermore, more (P < 0.05) oocytes from the follicular stage supplemented with 2.0 microg/ml of E2 and P4 (16.6%) were matured to MII stage compared to oocytes from the follicular stage supplemented with 2.0 microg/ml E2 alone (10.4%) or the other groups of oocytes (0-7.8%). Interestingly, compared to 2.0 microg/ml E2 alone (10.4%), supplementation of 2 microg/ml E2 + 0.5 microg/ml P4 (3.4%) decreased the maturation of oocytes from the follicular stage to MII stage. In conclusion, the present study demonstrated that supplementation of the culture medium with E2 or P4 alone significantly increased maturation of canine oocyte to MII and that P4 supplementation with E2 further promote or decrease oocyte maturation compared to E2 alone depending on P4 concentration.  相似文献   
54.
55.
Hydrogen peroxide (H2O2) accumulates transiently in various cell types stimulated with peptide growth factors and participates in receptor signaling by oxidizing the essential cysteine residues of protein tyrosine phosphatases and the lipid phosphatase PTEN. The reversible inactivation of these phosphatases by H2O2 is likely required to prevent futile cycles of phosphorylation-dephosphorylation of proteins and phosphoinositides. The accumulation of H2O2 is possible even in the presence of large amounts of the antioxidant enzymes peroxiredoxin I and II in the cytosol, probably because of a built-in mechanism of peroxiredoxin inactivation that is mediated by H2O2 and reversed by an ATP-dependent reduction reaction catalyzed by sulfiredoxin.  相似文献   
56.
The binding of plasminogen activators and plasminogen to the cell surface results in the rapid generation of the serine protease plasmin. Plasmin is further degraded by an autoproteolytic reaction, resulting in the release of an angiostatin, A61 (Lys78-Lys468). Previously, we demonstrated that the annexin A2-S100A10 heterotetramer (AIIt) stimulates the release of A61 from plasmin by promoting the autoproteolytic cleavage of the Lys468-Gly469 bond and reduction of the plasmin Cys462-Cys541 disulfide (Kwon, M., Caplan, J. F., Filipenko, N. R., Choi, K. S., Fitzpatrick, S. L., Zhang, L., and Waisman, D. M. (2002) J. Biol. Chem. 277, 10903-10911). Mechanistically, it was unclear if AIIt promoted a conformational change in plasmin, resulting in contortion of the plasmin disulfide, or directly reduced the plasmin disulfide. In the present study, we show that AIIt thiols are oxidized during the reduction of plasmin disulfides, establishing that AIIt directly participates in the reduction reaction. Incubation of HT1080 cells with plasminogen resulted in the rapid loss of thiol-specific labeling of AIIt by 3-(N-maleimidopropionyl)biocytin. The plasminogen-dependent oxidation of AIIt could be attenuated by thioredoxin. Thioredoxin reductase catalyzed the transfer of electrons from NADPH to the oxidized thioredoxin, thus completing the flow of electrons from NADPH to AIIt. Therefore, we identify AIIt as a substrate of the thioredoxin system and propose a new model for the role of AIIt in the redox-dependent processing of plasminogen and generation of an angiostatin at the cell surface.  相似文献   
57.
Annexin A3 is a potential angiogenic mediator   总被引:7,自引:0,他引:7  
Angiogenesis is a complex process that is regulated by a variety of angiogenic activators and inhibitors. Disruption of the balanced angiogenesis leads to the progress of diseases such as tumor growth, rheumatoid arthritis, and various blood vessel-related disorders. Even though a number of proteins involved in angiogenesis have been identified so far, more protein factors remain to be identified due to complexity of the process. Here we report that annexin A3 (ANXA3) induces migration and tube formation of human umbilical vein endothelial cells. High level of vascular endothelial growth factor (VEGF), a prominent angiogenic factor, is also detected in conditioned medium obtained from cells transfected with ANXA3 expression plasmid. Reporter assays show that ANXA3 enhances hypoxia-inducible factor-1 (HIF-1) transactivation activity. Taken together, our results suggest that ANXA3 is a novel angiogenic factor that induces VEGF production through the HIF-1 pathway.  相似文献   
58.
2-Cys peroxiredoxin (Prx) is a novel cellular peroxidase that reduces peroxides in the presence of thioredoxin, thioredoxin reductase, and nicotinamide adenine dinucleotide phosphate (NADPH) and that functions in H(2)O(2)-mediated signal transduction. Recent studies have shown that 2-cys Prx can be inactivated by cysteine overoxidation in conditions of oxidative stress. Therefore, peroxidase activity, rather than the protein level, of 2-cys Prx is the more important measure to predict its cellular function. Here, we introduce a modified activity assay method for mammalian 2-cys Prx based on yeast nonselenium thioredoxin reductase. Yeast thioredoxin reductase is expressed in Escherichia coli cells and purified at high yield (40 mg/L of culture broth) as an active flavoprotein by combined diethyl aminoethyl (DEAE) and phenyl hydrophobic chromatography. The optimal concentrations of yeast thioredoxin and thioredoxin reductase required to achieve maximum mammalian 2-cys Prx activity are 3.0 and 1.5 microM, respectively. This modified assay method is useful for measuring 2-cys Prx activity in cell lysates and can also be adapted for a 96-well plate reader for high-throughput screening of chemical compounds that target 2-cys Prx.  相似文献   
59.
Hydrogen peroxide (H2O2) is an incompletely reduced metabolite of oxygen that has a diverse array of physiological and pathological effects within living cells depending on the extent, timing, and location of its production. Characterization of the cellular functions of H2O2 requires measurement of its concentration selectively in the presence of other oxygen metabolites and with spatial and temporal fidelity in live cells. For the measurement of H2O2 in biological fluids, several sensitive methods based on horseradish peroxidase and artificial substrates (such as Amplex Red and 3,5,3’5’-tetramethylbenzidine) or on ferrous oxidation in the presence of xylenol orange (FOX) have been developed. For measurement of intracellular H2O2, methods based on dihydro compounds such as 2’,7’-dichlorodihydrofluorescein that fluoresce on oxidation are used widely because of their sensitivity and simplicity. However, such probes react with a variety of cellular oxidants including nitric oxide, peroxynitrite, and hypochloride in addition to H2O2. Deprotection reaction-based probes (PG1 and PC1) that fluoresce on H2O2-specific removal of a boronate group rather than on nonspecific oxidation have recently been developed for selective measurement of H2O2 in cells. Furthermore, a new class of organelle-targetable fluorescent probes has been devised by joining PG1 to a substrate of SNAP-tag. Given that SNAP-tag can be genetically targeted to various subcellular organelles, localized accumulation of H2O2 can be monitored with the use of SNAP-tag bioconjugation chemistry. However, given that both dihydro- and deprotection-based probes react irreversibly with H2O2, they cannot be used to monitor transient changes in H2O2 concentration. This drawback has been overcome with the development of redox-sensitive green fluorescent protein (roGFP) probes, which are prepared by the introduction of two redox-sensitive cysteine residues into green fluorescent protein; the oxidation of these residues to form a disulfide results in a conformational change of the protein and altered fluorogenic properties. Such genetically encoded probes react reversibly with H2O2 and can be targeted to various compartments of the cell, but they are not selective for H2O2 because disulfide formation in roGFP is promoted by various cellular oxidants. A new type of H2O2-selective, genetically encoded, and reversible fluorescent probe, named HyPer, was recently prepared by insertion of a circularly permuted yellow fluorescent protein (cpYFP) into the bacterial peroxide sensor protein OxyR.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号