首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2966篇
  免费   321篇
  3287篇
  2023年   11篇
  2022年   34篇
  2021年   52篇
  2020年   47篇
  2019年   57篇
  2018年   70篇
  2017年   57篇
  2016年   101篇
  2015年   129篇
  2014年   138篇
  2013年   167篇
  2012年   194篇
  2011年   197篇
  2010年   119篇
  2009年   122篇
  2008年   129篇
  2007年   132篇
  2006年   137篇
  2005年   104篇
  2004年   103篇
  2003年   107篇
  2002年   89篇
  2001年   91篇
  2000年   84篇
  1999年   85篇
  1998年   32篇
  1997年   25篇
  1996年   20篇
  1995年   24篇
  1994年   24篇
  1993年   23篇
  1992年   50篇
  1991年   57篇
  1990年   54篇
  1989年   56篇
  1988年   39篇
  1987年   32篇
  1986年   35篇
  1985年   29篇
  1984年   24篇
  1983年   29篇
  1982年   23篇
  1981年   17篇
  1980年   14篇
  1979年   13篇
  1978年   16篇
  1977年   16篇
  1975年   9篇
  1974年   12篇
  1971年   11篇
排序方式: 共有3287条查询结果,搜索用时 15 毫秒
51.
52.
The term "monoclonal gammopathy" (MG) includes a group of clonal plasma cell disorders, which show heterogeneous clinical behavior. While multiple myeloma (MM) and plasma cell leukemia (PCL) are incurable malignant diseases, most patients with MG of undetermined significance (MGUS) show an indolent/benign clinical course. Evidence has accumulated which supports the role of the bone marrow microenvironment in MG. Accordingly, the survival, drug-resistance and proliferation of MM cells have been shown to be largely dependent on a supportive microenvironment. Among the different environment-associated parameters, those related to the status/activity of the immune system are particularly relevant. This review focuses on the different ways clonal plasma cells (PC) interact with the immune system in different models of MG, to characterize crucial events in the development and progression of MG. These advances may support the design of novel therapeutic approaches in patients with MG.  相似文献   
53.
DREAM (calsenilin or KChIP-3) is a calcium sensor involved in regulation of diverse physiological processes by interactions with multiple intracellular partners including DNA, Kv4 channels, and presenilin, however the detailed mechanism of the recognition of the intracellular partners remains unclear. To identify the surface hydrophobic surfaces on apo and Ca2 +DREAM as a possible interaction sites for target proteins and/or specific regulators of DREAM function the binding interactions of 1,8-ANS and 2,6-ANS with DREAM were characterized by fluorescence and docking studies. Emission intensity of ANS–DREAM complexes increases upon Ca2 + association which is consistent with an overall decrease in surface polarity. The dissociation constants for ANS binding to apoDREAM and Ca2 +DREAM were determined to be 195 ± 20 μM and 62 ± 4 μM, respectively. Fluorescence lifetime measurements indicate that two ANS molecules bind in two independent binding sites on DREAM monomer. One site is near the exiting helix of EF-4 and the second site is located in the hydrophobic crevice between EF-3 and EF-4. 1,8-ANS displacement studies using arachidonic acid demonstrate that the hydrophobic crevice between EF-3 and EF-4 serves as a binding site for fatty acids that modulate functional properties of Kv4 channel:KChIP complexes. Thus, the C-terminal hydrophobic crevice may be involved in DREAM interactions with small hydrophobic ligands as well as other intracellular proteins.  相似文献   
54.
55.
Evolutionary history and early association with anthropogenic environments have made Saccharomyces cerevisiae the quintessential wine yeast. This species typically dominates any spontaneous wine fermentation and, until recently, virtually all commercially available wine starters belonged to this species. The Crabtree effect, and the ability to grow under fully anaerobic conditions, contribute decisively to their dominance in this environment. But not all strains of Saccharomyces cerevisiae are equally suitable as starter cultures. In this article, we review the physiological and genetic characteristics of S. cerevisiae wine strains, as well as the biotic and abiotic factors that have shaped them through evolution. Limited genetic diversity of this group of yeasts could be a constraint to solving the new challenges of oenology. However, research in this field has for many years been providing tools to increase this diversity, from genetic engineering and classical genetic tools to the inclusion of other yeast species in the catalogues of wine yeasts. On occasion, these less conventional species may contribute to the generation of interspecific hybrids with S. cerevisiae. Thus, our knowledge about wine strains of S. cerevisiae and other wine yeasts is constantly expanding. Over the last decades, wine yeast research has been a pillar for the modernisation of oenology, and we can be confident that yeast biotechnology will keep contributing to solving any challenges, such as climate change, that we may face in the future.  相似文献   
56.
57.
Livers of juvenile cabrilla sea basses ( Serranus cabrilla ) were subjected to light and electron transmission microscopy following different periods of maintenance in an aquarium. Since this fish is easy to feed in captivity and the hepatic structure was found to be comparable at the four periods tested (0, 5, 10 and 20 days), both at the histological and ultrastructural level, the liver of S. cabrilla could be an available model for marine contamination experimental studies. As in other fish species, it is not possible to distinguish the portal lobules and the triads. The Melano-Macrophage Centres contain tipofuscins, ceroids and haemosiderin, but they do not contain any melanin. The hepatocytes are arranged in cords (two cells thick), and, at the ultrastructural level, they show numerous microvilli in the perisinusoidal and canalicular areas. The hyaloplasm includes a considerable amount of glycogen and some lipid droplets are occasionally observed. Mitochondria, rough endoplasmic reticulum and the Golgi apparatus are relatively scarce.  相似文献   
58.
The osmotic role of nitrate during aftermath growth of Lolium perenne L. cv. Réveille was investigated. Plants were grown from seed in a controlled environment using a liquid medium with 1.0 m M NH4NO3 as nitrogen source.
Eight-week-old plants were cut 4.0 cm above the root system and then harvested over a 14-day period of regrowth on the same initial nutrient solution, except that nitrate was 15N labelled. Throughout the experimental period, nitrate storage and reduction in roots were low. In stubble and especially in leaves, nitrate accumulated during the first 6 days of regrowth whereas nitrate reduction mainly occurred after this period. Analyses of carbohydrate, chloride and potassium contents in stubble and leaves showed that the accumulation of nitrate osmotically compensated for the decrease in soluble sugars during the first 6 days of regrowth.
The cumulative osmotic potential of sugars, chloride and nitrate in differently treated plants was studied in stubble and leaves. Compared with uncut plants, the lower carbohydrate concentrations found in cut plants regrowing on 1.0 m M NH4NO3 were compensated for by an accumulation of nitrate. During aftermath growth on low nitrogen nutrition (0.2 m M NH4NO3), chloride replaced nitrate, supporting the proposed osmotic function of nitrate.
It is concluded that nitrate is involved in the osmotic adjustment of ryegrass during regrowth after cutting.  相似文献   
59.
Fur is a bacterial regulator using iron as a cofactor to bind to specific DNA sequences. This protein exists in solution as several oligomeric states, of which the dimer is generally assumed to be the biologically relevant one. We describe the equilibria that exist between dimeric Escherichia coli Fur and higher oligomers. The dissociation constant for the dimer-tetramer equilibrium is estimated to be in the millimolar range. Oligomerization is enhanced at low ionic strength and pH. The as-isolated monomeric form of Fur is not in equilibrium with the dimer and contains two disulfide bridges (C92-C95 and C132-C137). Binding of the monomer to DNA is metal-dependent and sequence specific with an apparent affinity 5.5 times lower than that of the dimer. Size exclusion chromatography, EDC cross-linking, and CD spectroscopy show that reconstitution of the dimer from the monomer requires reduction of the disulfide bridges and coordination of Zn2+. Reduction of the disulfide bridges or Zn2+ alone does not promote dimerization. EDC and DMA cross-links reveal that the N-terminal NH2 group of one subunit is in an ionic interaction with acidic residues of the C-terminal tail and close to Lys76 and Lys97 of the other. Furthermore, the yields of cross-link drastically decrease upon binding of metal in the activation site, suggesting that the N-terminus is involved in the conformational change. Conversely, oxidizing reagents, H2O2 or diamide, disrupt the dimeric structure leading to monomer formation. These results establish that coordination of the zinc ion and the redox state of the cysteines are essential for holding E. coli Fur in a dimeric state.  相似文献   
60.
Cowpea mosaic virus (CPMV), a plant virus that is a member of the picornavirus superfamily, is increasingly being used for nanotechnology applications, including material science, vascular imaging, vaccine development, and targeted drug delivery. For these applications, it is critical to understand the in vivo interactions of CPMV within the mammalian system. Although the bioavailability of CPMV in the mouse has been demonstrated, the specific interactions between CPMV and mammalian cells need to be characterized further. Here we demonstrate that although the host range for replication of CPMV is confined to plants, mammalian cells nevertheless bind and internalize CPMV in significant amounts. This binding is mediated by a conserved 54-kDa protein found on the plasma membranes of both human and murine cell lines. Studies using a deficient cell line, deglycosidases, and glycosylation inhibitors showed that the CPMV binding protein (CPMV-BP) is not glycosylated. A possible 47-kDa isoform of the CPMV-BP was also detected in the organelle and nuclear subcellular fraction prepared from murine fibroblasts. Further characterization of CPMV-BP is important to understand how CPMV is trafficked through the mammalian system and may shed light on how picornaviruses may have evolved between plant and animal hosts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号