首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   533篇
  免费   62篇
  国内免费   2篇
  597篇
  2023年   3篇
  2022年   6篇
  2021年   8篇
  2020年   3篇
  2019年   12篇
  2018年   13篇
  2017年   9篇
  2016年   9篇
  2015年   18篇
  2014年   22篇
  2013年   30篇
  2012年   26篇
  2011年   25篇
  2010年   23篇
  2009年   23篇
  2008年   33篇
  2007年   29篇
  2006年   20篇
  2005年   29篇
  2004年   26篇
  2003年   13篇
  2002年   25篇
  2001年   10篇
  2000年   9篇
  1999年   9篇
  1998年   13篇
  1997年   10篇
  1996年   9篇
  1995年   6篇
  1994年   6篇
  1993年   7篇
  1992年   11篇
  1991年   11篇
  1990年   10篇
  1989年   9篇
  1988年   12篇
  1987年   4篇
  1986年   4篇
  1985年   5篇
  1984年   9篇
  1982年   4篇
  1981年   5篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   6篇
  1967年   2篇
  1923年   1篇
排序方式: 共有597条查询结果,搜索用时 15 毫秒
41.
Surfactant protein B (SP-B) is a developmentally and hormonally regulated lung protein that is required for normal surfactant function. We generated transgenic mice carrying the human SP-B promoter (-1,039/+431 bp) linked to chloramphenicol acetyltransferase (CAT). CAT activity was high in lung and immunoreactive protein localized to alveolar type II and bronchiolar epithelial cells. In addition, thyroid, trachea, and intestine demonstrated CAT activity, and each of these tissues also expressed low levels of SP-B mRNA. Developmental expression of CAT activity and SP-B mRNA in fetal lung were similar and both increased during explant culture. SP-B mRNA but not CAT activity decreased during culture of adult lung, and both were reduced by transforming growth factor (TGF)-beta(1). Treatment of adult mice with intratracheal bleomycin caused similar time-dependent decreases in lung SP-B mRNA and CAT activity. These findings indicate that the human SP-B promoter fragment directs tissue- and lung cell-specific transgene expression and contains cis-acting elements involved in regulated expression during development, fetal lung explant culture, and responsiveness to TGF-beta and bleomycin-induced lung injury.  相似文献   
42.
43.
44.
45.
46.
This laboratory exercise uses a simple preparation and a straightforward protocol to illustrate many of the basic principles of vascular biology covered in an introductory physiology course. The design of this laboratory allows students to actively participate in an exercise demonstrating the regulation of arterial tone by endothelial and extrinsic factors. In addition, this hands-on laboratory allows students to gather data using well-known basic biomedical research techniques. Specifically, students are introduced to an isolated organ-chamber technique that is widely used to study cellular mechanisms of many tissues including vascular smooth muscle contraction and dilation. On the basis of student evaluations, participation in the experiments and interpreting data reinforce lecture materials on smooth muscle and endothelial cell function and illustrate mechanisms regulating vascular tone. Students come away with a greater understanding of vascular biology, a deeper appreciation of integrative physiology, and an understanding of the process of conducting tissue-chamber experiments.  相似文献   
47.
48.
Estimation of evolutionary distances from coding sequences must take into account protein-level selection to avoid relative underestimation of longer evolutionary distances. Current modeling of selection via site-to-site rate heterogeneity generally neglects another aspect of selection, namely position-specific amino acid frequencies. These frequencies determine the maximum dissimilarity expected for highly diverged but functionally and structurally conserved sequences, and hence are crucial for estimating long distances. We introduce a codon- level model of coding sequence evolution in which position-specific amino acid frequencies are free parameters. In our implementation, these are estimated from an alignment using methods described previously. We use simulations to demonstrate the importance and feasibility of modeling such behavior; our model produces linear distance estimates over a wide range of distances, while several alternative models underestimate long distances relative to short distances. Site-to-site differences in rates, as well as synonymous/nonsynonymous and first/second/third-codon-position differences, arise as a natural consequence of the site-to-site differences in amino acid frequencies.   相似文献   
49.
Many cyanobacteria exhibit surface motility powered by type 4 pili (T4P). In the model filamentous cyanobacterium Nostoc punctiforme, the T4P systems are arrayed in static, bipolar rings in each cell. The chemotaxis‐like Hmp system is essential for motility and the coordinated polar accumulation of PilA on cells in motile filaments, while the Ptx system controls positive phototaxis. Using transposon mutagenesis, a gene, designated hmpF, was identified as involved in motility. Synteny among filamentous cyanobacteria and the similar expression patterns for hmpF and hmpD imply that HmpF is part of the Hmp system. Deletion of hmpF produced a phenotype distinct from other hmp genes, but indistinguishable from pilB or pilQ. Both an HmpF‐GFPuv fusion protein, and PilA, as assessed by in situ immunofluorescence, displayed coordinated, unipolar localization at the leading pole of each cell. Reversals were modulated by changes in light intensity and preceded by the migration of HmpF‐GFPuv to the lagging cell poles. These results are consistent with a model where direct interaction between HmpF and the T4P system activates pilus extension, the Hmp system facilitates coordinated polarity of HmpF to establish motility, and the Ptx system modulates HmpF localization to initiate reversals in response to changes in light intensity.  相似文献   
50.
Electroporation has become a widely used method for rapidly and efficiently introducing foreign DNA into a wide range of cells. Electrotransformation has become the method of choice for introducing DNA into prokaryotes that are not naturally competent. Electroporation is a rapid, efficient, and streamlined transformation method that, in addition to purified DNA and competent bacteria, requires commercially available gene pulse controller and cuvettes. In contrast to the pulsing step, preparation of electrocompetent cells is time consuming and labor intensive involving repeated rounds of centrifugation and washes in decreasing volumes of sterile, cold water, or non-ionic buffers of large volumes of cultures grown to mid-logarithmic phase of growth. Time and effort can be saved by purchasing electrocompetent cells from commercial sources, but the selection is limited to commonly employed E. coli laboratory strains. We are hereby disseminating a rapid and efficient method for preparing electrocompetent E. coli, which has been in use by bacteriology laboratories for some time, can be adapted to V. cholerae and other prokaryotes. While we cannot ascertain whom to credit for developing the original technique, we are hereby making it available to the scientific community.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号