首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16036篇
  免费   1537篇
  国内免费   1681篇
  19254篇
  2024年   47篇
  2023年   201篇
  2022年   431篇
  2021年   719篇
  2020年   526篇
  2019年   631篇
  2018年   632篇
  2017年   525篇
  2016年   648篇
  2015年   963篇
  2014年   1135篇
  2013年   1316篇
  2012年   1518篇
  2011年   1311篇
  2010年   929篇
  2009年   797篇
  2008年   908篇
  2007年   871篇
  2006年   734篇
  2005年   688篇
  2004年   579篇
  2003年   548篇
  2002年   567篇
  2001年   344篇
  2000年   277篇
  1999年   286篇
  1998年   165篇
  1997年   154篇
  1996年   126篇
  1995年   78篇
  1994年   95篇
  1993年   61篇
  1992年   67篇
  1991年   63篇
  1990年   55篇
  1989年   41篇
  1988年   34篇
  1987年   28篇
  1986年   38篇
  1985年   22篇
  1984年   18篇
  1983年   12篇
  1982年   16篇
  1981年   16篇
  1980年   6篇
  1977年   4篇
  1976年   5篇
  1972年   2篇
  1971年   2篇
  1969年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
131.
In the present study, the metabolic profile of PAC-1, a potential anticancer drug, was investigated using liquid chromatography-mass spectrometric (LC/MS) techniques. Two different types of mass spectrometers--a quadrupole time-of-flight (Q-TOF) mass spectrometer and an ion trap (IT) mass spectrometer--were employed to acquire structural information on PAC-1 metabolites. A gradient liquid chromatographic system composed of 0.2% formic acid in methanol and 0.2% formic acid in water was used for metabolite separation on an Agilent TC-C(18) column. A total of 16 metabolites were detected. The corresponding product ion spectra were acquired and interpreted, and structures were proposed. Accurate mass measurement using LC-Q-TOF was used to determine the elemental composition of metabolites thereby confirming the proposed structures of these metabolites. Phase I metabolic changes were predominantly observed, including debenzylation, dihydrodiol formation, hydroxylation, and dihydroxylation. The detected phase II metabolites included PAC-1 and hydroxylated PAC-1 glucuronide conjugates. Based on metabolite analysis, several PAC-1 metabolic pathways in rat were proposed.  相似文献   
132.
Phosphodiesterase 4 (PDE4) has been established as a drug target for inflammatory diseases of respiratory tract like asthma and chronic obstructive pulmonary disease. The selective inhibitors of PDE4B, a subtype of PDE4, are devoid of adverse effects like nausea and vomiting commonly associated with non-selective PDE4B inhibitors. This makes the development of PDE4B subtype selective inhibitors a desirable research goal. Thus, in the present study, molecular docking, molecular dynamic simulations and binding free energy were performed to explore potential selective PDE4B inhibitors based on ginger phenolic compounds. The results of docking studies indicate that some of the ginger phenolic compounds demonstrate higher selective PDE4B inhibition than existing selective PDE4B inhibitors. Additionally, 6-gingerol showed the highest PDE4B inhibitory activity as well as selectivity. The comparison of binding mode of PDE4B/6-gingerol and PDE4D/6-gingerol complexes revealed that 6-gingerol formed additional hydrogen bond and hydrophobic interactions with active site and control region 3 (CR3) residues in PDE4B, which were primarily responsible for its PDE4B selectivity. The results of binding free energy demonstrated that electrostatic energy is the primary factor in elucidating the mechanism of PDE4B inhibition by 6-gingerol. Dynamic cross-correlation studies also supported the results of docking and molecular dynamics simulation. Finally, a small library of molecules were designed based on the identified structural features, majority of designed molecules showed higher PDE4B selectivity than 6-gingerol. These results provide important structural features for designing new selective PDE4B inhibitors as anti-inflammatory drugs and promising candidates for synthesis and pre-clinical pharmacological investigations.  相似文献   
133.
To overcome the high energy-consuming process of microalgae drying, a two-step lipase catalysis technique for the preparation of biodiesel from microalgae lipid of Chlorella spp. was developed. In the first step, free fatty acids (FAAs) and triacylglycerols (TAGs) are released after cell disruption and extracted, while the TAGs were hydrolysed by free lipase in aqueous phase. In the second step, FAAs were esterified with ethanol in the catalysis of free suspended lipase. The maximum rate of hydrolysis and esterification was 93.6% and 91.3%, respectively. The effects of reaction parameters, such as reaction time, enzyme amount, water content and molar ratio of lipid to ethanol on hydrolysis or esterification, were investigated. The results indicated that two-step reaction process (hydrolyse esterify) for biodiesel production were feasible.  相似文献   
134.
We demonstrate the use of the near‐infrared attenuation coefficient, measured using optical coherence tomography (OCT), in longitudinal assessment of hypertrophic burn scars undergoing fractional laser treatment. The measurement method incorporates blood vessel detection by speckle decorrelation and masking, and a robust regression estimator to produce 2D en face parametric images of the attenuation coefficient of the dermis. Through reliable co‐location of the field of view across pre‐ and post‐treatment imaging sessions, the study was able to quantify changes in the attenuation coefficient of the dermis over a period of ~20 weeks in seven patients. Minimal variation was observed in the mean attenuation coefficient of normal skin and control (untreated) mature scars, as expected. However, a significant decrease (13 ± 5%, mean ± standard deviation) was observed in the treated mature scars, resulting in a greater distinction from normal skin in response to localized damage from the laser treatment. By contrast, we observed an increase in the mean attenuation coefficient of treated (31 ± 27%) and control (27 ± 20%) immature scars, with numerical values incrementally approaching normal skin as the healing progressed. This pilot study supports conducting a more extensive investigation of OCT attenuation imaging for quantitative longitudinal monitoring of scars.

En face 2D OCT attenuation coefficient map of a treated immature scar derived from the pre‐treatment (top) and the post‐treatment (bottom) scans. (Vasculature (black) is masked out.) The scale bars are 0.5 mm.  相似文献   

135.

Background

Many observational studies linked vitamin D to cardiometabolic risks besides its pivotal role in musculoskeletal diseases, but evidence from trials is lacking and inconsistent.

Aim

To determine whether Vitamin D supplementation in urban premenopausal women with vitamin D deficiency can improve cardiometabolic risks and health-related quality of life (HRQOL).

Design

A double-blind randomized controlled trial was conducted in Kuala Lumpur, Malaysia. A total of 192 vitamin D deficient (<50 nmol/l) premenopausal women were randomized to receive either vitamin D 50,000 IU or placebo once a week for 2 months and then monthly for 10 months. Primary outcomes were serum 25(OH)D, serum lipid profiles, blood pressure and HOMA-IR measured at baseline, 6 months and 12 months. HRQOL was assessed with SF-36 at baseline and 12 months.

Results

Ninety three and ninety-nine women were randomised into intervention and placebo groups respectively. After 12 months, there were significant differences in the serum 25(OH)D concentration (mean difference: 49.54; 95% CI: 43.94 to 55.14) nmol/l) and PTH levels (mean difference: −1.02; 95% CI: −1.67 to −0.38 pmol/l) in the intervention group compared to placebo group. There was significant difference between treatment group in both serum 25(OH)D and PTH. There was no effect of supplementation on HOMA-IR, serum lipid profiles and blood pressure (all p>0.05) between two groups. There was a small but significant improvement in HRQOL in the components of vitality (mean difference: 5.041; 95% CI: 0.709 to 9.374) and mental component score (mean difference: 2.951; 95% CI: 0.573 to 5.329) in the intervention group compared to placebo group.

Conclusion

Large and less frequent dosage vitamin D supplementation was safe and effective in the achievement of vitamin D sufficiency. However, there was no improvement in measured cardiometabolic risk factors in premenopausal women. Conversely vitamin D supplementation improves some components of HRQOL.

Trial Registration

Australian New Zealand Clinical Trial Registry ACTRN12612000452897  相似文献   
136.
Apoptosis is an evolutionarily conserved mechanism that removes damaged or unwanted cells, effectively maintaining cellular homeostasis. It has long been suggested that a deficiency in this type of naturally occurring cell death could potentially lead to necrosis, resulting in the release of endogenous immunogenic molecules such as damage-associated molecular patterns (DAMPs) and a noninfectious inflammatory response. However, the details about how danger signals from apoptosis-deficient cells are detected and translated to an immune response are largely unknown. In this study, we found that Drosophila mutants deficient for Dronc, the key initiator caspase required for apoptosis, produced the active form of the endogenous Toll ligand Spätzle (Spz). We speculated that, as a system for sensing potential DAMPs in the hemolymph, the dronc mutants constitutively activate a proteolytic cascade that leads to Spz proteolytic processing. We demonstrated that Toll signaling activation required the action of Persephone, a CLIP domain serine protease that usually reacts to microbial proteolytic activities. Our findings show that the Persephone proteolytic cascade plays a crucial role in mediating DAMP-induced systemic responses in apoptosis-deficient Drosophila mutants.  相似文献   
137.
The non‐structural protein 4B (NS4B) of the hepatitis C virus (HCV) is an endoplasmic reticulum (ER) membrane protein comprising two consecutive amphipathic α‐helical domains (AH1 and AH2). Its self‐oligomerization via the AH2 domain is required for the formation of the membranous web that is necessary for viral replication. Previously, we reported that the host‐encoded ER‐associated reticulon 3 (RTN3) protein is involved in the formation of the replication‐associated membranes of (+)RNA enteroviruses during viral replication. In this study, we demonstrated that the second transmembrane region of RTN3 competed for, and bound to, the AH2 domain of NS4B, thus abolishing NS4B self‐interaction and leading to the downregulation of viral replication. This interaction was mediated by two crucial residues, lysine 52 and tyrosine 63, of AH2, and was regulated by the AH1 domain. The silencing of RTN3 in Huh7 and AVA5 cells harbouring an HCV replicon enhanced the replication of HCV, which was counteracted by the overexpression of recombinant RTN3. The synthesis of viral RNA was also increased in siRNA‐transfected human primary hepatocytes infected with HCV derived from cell culture. Our results demonstrated that RTN3 acted as a restriction factor to limit the replication of HCV.  相似文献   
138.
139.
Psychological distress reduces the efficacy of chemotherapy in breast cancer patients. The mechanism may be related to the altered neuronal or hormonal secretions during stress. Here, we reported that adrenaline, a hormone mediating the biological activities of stress, upregulates mdr1 gene expression in MCF-7 breast cancer cells via alpha(2)-adrenergic receptors in a dose-dependent manner. Mdr1 upregulation can be specifically inhibited by pretreatment with mdr1-siRNA. Consequently, adrenergic stimulation enhances the pump function of P-glycoprotein and confers resistance of MCF-7 cells to paclitaxel. In vivo, restraint stress increases mdr1 gene expression in the MCF-7 cancers that are inoculated subcutaneously into the SCID mice and provokes resistance to doxorubicin in the implanted tumors. The effect can be blocked by injection of yohimbine, an alpha(2)-adrenergic inhibitor, but not by metyrapone, a corticosterone synthesis blocker. Therefore, we conclude that breast cancers may develop resistance against chemotherapeutic drugs under psychological distress by over-expressing mdr1 via adrenergic stimulation.  相似文献   
140.
S100A1 is an EF-hand type Ca2+-binding protein with a muscle-specific expression pattern. The highest S100A1 protein levels are found in cardiomyocytes, and it is expressed already at day 8 in the heart during embryonic development. Since S100A1 is known to be involved in the regulation of Ca2+ homeostasis, we tested whether extracellular S100A1 plays a role in regulating the L-type Ca2+ current (I(Ca)) in ventricular cardiomyocytes. Murine embryonic (day 16.5 postcoitum) ventricular cardiomyocytes were incubated with S100A1 (0.001-10 microM) for different time periods (20 min to 48 h). I(Ca) density was found to be significantly increased as early as 20 min (from -10.8 +/- 1 pA/pF, n = 18, to -22.9 +/- 1.4 pA/pF; +112.5 +/- 13%, n = 9, p < 0.001) after the addition of S100A1 (1 microM). S100A1 also enhanced I(Ca) current density in neonatal rat cardiomyocytes. Fluorescence and capacitance measurements evidenced a fast translocation of rhodamine-coupled S100A1 from the extracellular space into cardiomyocytes. S100A1 treatment did not affect cAMP levels. However, protein kinase inhibitor, a blocker of cAMP-dependent protein kinase A (PKA), abolished the S100A1-induced enhancement of I(Ca). Accordingly, measurements of PKA activity yielded a significant increase in S100A1-treated cardiomyocytes. In vitro reconstitution assays further demonstrated that S100A1 enhanced PKA activity. We conclude that the Ca2+-binding protein S100A1 augments transsarcolemmal Ca2+ influx via an increase of PKA activity in ventricular cardiomyocytes and hence represents an important regulator of cardiac function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号