首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10163篇
  免费   669篇
  国内免费   2篇
  2023年   64篇
  2022年   148篇
  2021年   268篇
  2020年   141篇
  2019年   201篇
  2018年   232篇
  2017年   223篇
  2016年   355篇
  2015年   522篇
  2014年   585篇
  2013年   732篇
  2012年   790篇
  2011年   767篇
  2010年   544篇
  2009年   413篇
  2008年   572篇
  2007年   534篇
  2006年   558篇
  2005年   475篇
  2004年   489篇
  2003年   421篇
  2002年   402篇
  2001年   135篇
  2000年   86篇
  1999年   107篇
  1998年   93篇
  1997年   94篇
  1996年   67篇
  1995年   41篇
  1994年   52篇
  1993年   46篇
  1992年   49篇
  1991年   44篇
  1990年   38篇
  1989年   38篇
  1988年   34篇
  1987年   31篇
  1986年   29篇
  1985年   35篇
  1984年   35篇
  1983年   32篇
  1982年   38篇
  1981年   32篇
  1980年   31篇
  1979年   21篇
  1977年   16篇
  1976年   15篇
  1975年   15篇
  1974年   13篇
  1973年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
691.
We develop a maximum penalized-likelihood (MPL) method to estimate the fitnesses of amino acids and the distribution of selection coefficients (S = 2Ns) in protein-coding genes from phylogenetic data. This improves on a previous maximum-likelihood method. Various penalty functions are used to penalize extreme estimates of the fitnesses, thus correcting overfitting by the previous method. Using a combination of computer simulation and real data analysis, we evaluate the effect of the various penalties on the estimation of the fitnesses and the distribution of S. We show the new method regularizes the estimates of the fitnesses for small, relatively uninformative data sets, but it can still recover the large proportion of deleterious mutations when present in simulated data. Computer simulations indicate that as the number of taxa in the phylogeny or the level of sequence divergence increases, the distribution of S can be more accurately estimated. Furthermore, the strength of the penalty can be varied to study how informative a particular data set is about the distribution of S. We analyze three protein-coding genes (the chloroplast rubisco protein, mammal mitochondrial proteins, and an influenza virus polymerase) and show the new method recovers a large proportion of deleterious mutations in these data, even under strong penalties, confirming the distribution of S is bimodal in these real data. We recommend the use of the new MPL approach for the estimation of the distribution of S in species phylogenies of protein-coding genes.  相似文献   
692.
Polycationic peptides may present their C-termini in either amidated or acidic form; however, the effects of these conformations on the mechanisms of interaction with the membranes in general were not properly investigated up to now. Protonectarina-MP mastoparan with an either amidated or acidic C-terminus was utilized to study their interactions with anionic and zwitterionic vesicles, using measurements of dye leakage and a combination of H/D exchange and mass spectrometry to monitor peptide–membrane interactions. Mast cell degranulation, hemolysis and antibiosis assays were also performed using these peptides, and the results were correlated with the structural properties of the peptides. The C-terminal amidation promotes the stabilization of the secondary structure of the peptide, with a relatively high content of helical conformations, permitting a deeper interaction with the phospholipid constituents of animal and bacterial cell membranes. The results suggested that at low concentrations Protonectarina-MP interacts with the membranes in a way that both terminal regions remain positioned outside the external surface of the membrane, while the α-carbon backbone becomes partially embedded in the membrane core and changing constantly the conformation, and causing membrane destabilization. The amidation of the C-terminal residue appears to be responsible for the stabilization of the peptide conformation in a secondary structure that is richer in α-helix content than its acidic congener. The helical, amphipathic conformation, in turn, allows a deeper peptide–membrane interaction, favoring both biological activities that depend on peptide structure recognition by the GPCRs (such as exocytosis) and those activities dependent on membrane perturbation (such as hemolysis and antibiosis).  相似文献   
693.
The possible preferential action exerted by an inhibitor on the transformation of one of two agonist substrates catalyzed by the same enzyme has recently been reported in studies on aldose reductase inhibition. This event was defined as “intra-site differential inhibition” and the molecules able to exert this action as “differential inhibitors”. This work presents some basic kinetic models describing differential inhibition. Using a simple analytic approach, the results show that differential inhibition can occur through either competitive or mixed type inhibition in which the inhibitor prevalently targets the free enzyme. The results may help in selecting molecules whose differential inhibitory action could be advantageous in controlling the activity of enzymes acting on more than one substrate.  相似文献   
694.
Risk alleles within a gene desert at the 9p21 locus constitute the most prevalent genetic determinant of cardiovascular disease. Previous research has demonstrated that 9p21 risk variants influence gene expression in vascular tissues, yet the biological mechanisms by which this would mediate atherosclerosis merits further investigation. To investigate possible influences of this locus on other tissues, we explored expression patterns of 9p21-regulated genes in a panel of multiple human tissues and found that the tumor suppressor CDKN2B was highly expressed in subcutaneous adipose tissue (SAT). CDKN2B expression was regulated by obesity status, and this effect was stronger in carriers of 9p21 risk alleles. Covariation between expression of CDKN2B and genes implemented in adipogenesis was consistent with an inhibitory effect of CDKN2B on SAT proliferation. Moreover, studies of postprandial triacylglycerol clearance indicated that CDKN2B is involved in down-regulation of SAT fatty acid trafficking. CDKN2B expression in SAT correlated with indicators of ectopic fat accumulation, including markers of hepatic steatosis. Among genes regulated by 9p21 risk variants, CDKN2B appears to play a significant role in the regulation of SAT expandability, which is a strong determinant of lipotoxicity and therefore might contribute to the development of atherosclerosis.  相似文献   
695.
Curcumin derivatives with high chemical stability, improved solubility and carrying a functionalized appendage for the linkage to other entities, have been synthesized in a straightforward manner. All compounds retained Curcumin ability to bind Aβ peptide oligomers without inducing their aggregation. Moreover all Curcumin derivatives were able to stain very efficiently Aβ deposits.  相似文献   
696.
Lectins have been classified into a structurally diverse group of proteins that bind carbohydrates and glycoconjugates with high specificity. They are extremely useful molecules in the characterization of saccharides, as drug delivery mediators, and even as cellular surface makers. In this study, we present camptosemin, a new lectin from Camptosema ellipticum. It was characterized as an N-acetyl-d-galactosamine-binding homo-tetrameric lectin, with a molecular weight around 26 kDa/monomers. The monomers were stable over a wide range of pH values and exhibited pH-dependent oligomerization. Camptosemin promoted adhesion of breast cancer cells and hemagglutination, and both activities were inhibited by its binding of sugar. The stability and unfolding/folding behavior of this lectin was characterized using fluorescence and far-UV circular dichroism spectroscopies. The results indicate that chemical unfolding of camptosemin proceeds as a two-state monomer-tetramer process. In addition, small-angle X-ray scattering shows that camptosemin behaves as a soluble and stable homo-tetramer molecule in solution.  相似文献   
697.
The dissection of the molecular circuitries at the base of cell life and the identification of their abnormal transformation during carcinogenesis rely on the characterization of biological phenotypes generated by targeted overexpression or deletion of gene products through genetic manipulation. Fluorescence microscopy provides a wide variety of tools to monitor cell life with minimal perturbations. The observation of living cells requires the selection of a correct balance between temporal, spatial and “statistical” resolution according to the process to be analyzed. In the following paper ad hoc developed optical tools for dynamical tracking from cellular to molecular resolution will be presented. Particular emphasis will be devoted to discuss how to exploit light–matter interaction to selectively target specific molecular species, understanding the relationships between their intracellular compartmentalization and function.  相似文献   
698.
Neurofibromatosis type 2 is an inherited autosomal disorder caused by biallelic inactivation of the NF2 tumor suppressor gene. The NF2 gene encodes a 70-kDa protein, merlin, which is a member of the ezrin-radixin-moesin (ERM) family. ERM proteins are believed to be regulated by a transition between a closed conformation, formed by binding of their N-terminal FERM domain and C-terminal tail domain (CTD), and an open conformation, in which the two domains do not interact. Previous work suggests that the tumor suppressor function of merlin is similarly regulated and that only the closed form is active. Therefore, understanding the mechanisms that control its conformation is crucial. We have developed a series of probes that measures merlin conformation by fluorescence resonance energy transfer, both as purified protein and in live cells. Using these tools, we find that merlin exists predominately as a monomer in a stable, closed conformation that is mediated by the central α-helical domain. The contribution from the FERM-CTD interaction to the closed conformation appears to be less important. Upon phosphorylation or interaction with an effector protein, merlin undergoes a subtle conformational change, suggesting a novel mechanism that modulates the interaction between the FERM domain and the CTD.Neurofibromatosis type 2 is an inherited autosomal disorder that is characterized by bilateral schwannomas of the eighth cranial nerve. The tumor suppressor gene responsible for this disorder, NF2, was cloned in 1993 (45). Biallelic inactivation of the NF2 gene is also seen in spontaneous schwannoma, meningioma, and malignant mesothelioma (22). In mouse models, deletion of the Nf2 gene is embryonic lethal, indicating an essential role for NF2 in development (24). Heterozygous mice develop a variety of aggressive metastatic tumors that have lost the wild-type allele (23). Targeted deletion of the Nf2 gene in Schwann cells leads to schwannoma formation (7). In vitro, Nf2-null cells grow to significantly higher densities (31), suggesting that contact inhibition of growth is impaired in these cells and that mediation of growth arrest at high cell density may be the basis for the tumor suppressor function of the NF2 gene. In normal fibroblasts, merlin is inactive as a growth suppressor in subconfluent cells, becoming activated as they approach confluence, thereby effecting contact inhibition of growth (26).The NF2 gene encodes a 70-kDa protein called merlin (for moesin, ezrin, radixin-like protein), which shares significant homology with members of the ezrin-radixin-moesin (ERM) branch of the Band 4.1 superfamily (45). The domain structure of merlin, also shared with other ERM proteins, consists of an N-terminal FERM domain, followed by a central α-helical region (CH) and a C-terminal tail domain (CTD). The merlin FERM domain has relatively high sequence similarity with other ERM family members, a 60 to 70% identity over the first 300 amino acids. The CH domain and the CTD show much lower identity (28 to 36%); however, the α-helical character of the CH domain is preserved, as is the heptad repeat pattern typical of α-helices that form coiled coils (46).The critical point of regulation of all the ERM proteins is a high-affinity intramolecular interaction between the C-terminal domain and the FERM domain (4) (Fig. (Fig.1).1). The FERM domain folds into a three-lobed cloverleaf structure that acts as a multifaceted docking site for protein binding partners (16, 39). The CTD, consisting of four major and two minor helices and a beta sheet, binds to the FERM domain by extending across the face of the F2 and F3 lobes (32). This intramolecular head-to-tail binding results in a “closed” conformation, with the C-terminal domain covering much of the surface of the FERM domain (32, 44). For ezrin, radixin and moesin, the CTD functions as a mask, blocking access of effector molecules, such as the cell surface receptors CD44 and ICAM2 and adaptor molecules, like EBP50/NHERF, to sites on the surface of the FERM domain (11, 25, 44). The interaction between the CTD and FERM domain is regulated by phosphatidyl inositol-(4,5)-bisphosphate (PIP2) binding to the FERM domain and by phosphorylation of a critical residue in the CTD (3, 6, 10, 49). This residue, threonine 567 in ezrin, is conserved throughout the ERM family (21). Phosphorylation introduces a negative charge and a bulky side group that effectively reduces the affinity of the interaction, releasing the CTD from the FERM domain and causing a transition to an open conformation. Low-angle rotary shadowing electron microscopy (13) and biochemical studies (12) of purified radixin suggest that in the open conformation it is an extended filamentous structure with globular N and C termini that is greater than 240 Å in length. Signal transduction systems, such as the epidermal growth factor and Rho A pathways, induce phosphorylation of ERM proteins at the conserved C-terminal threonine via a number of kinases, including Rho kinase and protein kinase Cα (21, 28). Thus, conformational regulation of ERM proteins can be a point of integration of ERM activity with signal transduction pathways. The overall concept of ERM regulation, then, is centered upon a transition between an inactive, closed conformation that is mediated by the FERM-CTD interaction and an active, open conformation that is regulated by phosphorylation. In these two states, ERM proteins likely interact with different sets of binding partners, resulting in distinct functional outcomes.Open in a separate windowFIG. 1.ERM tertiary structure as represented by the crystal structure of full-length Sf-moesin (20), but with the merlin amino acid sequence substituted for Sf-moesin. Approximate boundary amino acid residues for all domains appear at the top of the figure. Each domain is assigned a different color. The ERM structure consists of an N-terminal FERM domain folded into three lobes, F1, F2, and F3. This is followed by a central α-helical domain containing three subhelices (αA, αB, and αC) and a CTD with four short helices. An ERM protein is thought to have an open conformation, an extended structure with the FERM domain and the CTD separated by the α-helical domain, that is more than 240 Å long. In the closed conformation, the α-helical domain bends at the αA-αB junction and again at the αB-αC junction, causing the CTD to be positioned over F2 and F3 of the FERM domain. More than half of the surface of the FERM domain is masked by interaction with the CTD, αA, and parts of αB and αC.Like the classical ERMs, merlin is also thought to be regulated by changes in conformation. The FERM domain and the CTD of merlin interact with each other, albeit at a lower level of affinity than the ezrin FERM domain and the CTD (29). There are important differences, however, between merlin and the other ERM proteins. First, phosphorylation of the conserved C-tail threonine T576 has not been reported to occur in mammalian merlin, and nonphosphorylatable and phosphomimetic substitutions at this site have no effect on merlin activity (42). Instead, merlin is phosphorylated at serine 518 in the CTD, a target of the p21-activated kinase PAK and protein kinase A (1, 18, 47). The growth-suppressive function of merlin is activated by dephosphorylation of S518 by the phosphatase PP1δ in a density-dependent manner (14). Second, it was reported in a study using FERM domain and CTD truncates of merlin that only cotransfection of both the N-and C-terminal halves resulted in growth suppression (38). Together, these observations suggested a model of inactive, phosphorylated merlin in an open conformation that, upon cell-to-cell contact, is dephosphorylated and transitions to a closed, growth suppressive conformation.The existing model for conformational regulation described above is inferred from indirect data and assays that generally measure the interaction of isolated FERM and CTD truncates rather than full-length molecules (9, 29, 38). It has been impossible to test directly because tools have not been available to specifically assay for either the open or the closed form of merlin. Therefore, we have developed a series of probes that measures merlin conformation by fluorescence resonance energy transfer (FRET), both as purified protein and in live cells. Using these tools, we show that merlin exists predominately as a monomer in a stable, largely closed conformation. Additionally, we find that the closed conformation is largely mediated by the central α-helical domain; the contribution of the FERM-CTD interaction appears to be less significant than previously thought. Finally, we find that phosphorylation and protein interaction cause unexpectedly small changes in merlin conformation. We propose a new and more refined model for merlin regulation, in which merlin function is regulated by specific but subtle conformational changes that modulate the interaction between the FERM domain and the CTD.  相似文献   
699.
Many animals aggregate into organized temporary or stable groups under the influence of biotic and abiotic factors, and some studies have shown the influence of habitat features on animal aggregation. This study, conducted from 2002 to 2004 in the Dzanga-Ndoki National Park, Central African Republic, studied a herd of forest buffaloes (Syncerus caffer nanus) to determine whether spatial aggregation patterns varied by season and habitat. Our results show that both habitat structure and season influenced spatial aggregation patterns. In particular, in open habitats such as clearings, the group covered a larger area when resting and was more rounded in shape compared to group properties noted in forest during the wet season. Moreover, forest buffaloes had a more aggregated spatial distribution when resting in clearings than when in the forest, and individual positions within the herd in the clearing habitat varied with age and sex. In the clearings, the adult male (n = 24) was generally, on most occasions, located in the centre of the herd (n = 20), and he was observed at the border only four times. In contrast, females (n = 80) occupied intermediate (n = 57), peripheral (n = 14) and central positions (n = 9) within the group. Juveniles (n = 77) also occurred in intermediate (n = 64) and peripheral positions (n = 13). Based on these results, we concluded that habitat characteristics and social behaviour can have relevant effects on the spatial distribution of animals within a group.  相似文献   
700.
There is some evidence that dogs can be naturally infected by Paracoccidioides brasiliensis in endemic areas of paracoccidioidomycosis. In order to evaluate canine infection with this fungus, a survey with 149 urban and 126 rural dogs was carried out using ELISA and intradermal tests with the gp43 antigen of P. brasiliensis in Uberaba, Minas Gerais state of Brazil. Forty-one out of 149 urban dogs were euthanatized and had their lungs, liver and spleen removed. One slice from each viscera was processed for histopathological examination and the remaining was homogenized and then cultivated on mycobiotic agar at room temperature and Fava-Netto medium at 35°C and observed for 12 weeks. Of urban dogs, 75 (50.3%) were small adult females, 56 (36%) were strays, while 93 (64%) had been donated to the municipal zoonosis control center. Nine (6.2%) had a positive intradermal test without statistical differences regarding gender, race, nutritional status or origin. No colonies with microscopic or morphology appearances resembling P. brasiliensis were isolated, nor granulomatous process or fungal structures were observed from histopathological examination. Eighty (53.6%) of the urban dogs presented seroreactivity, without statistical differences regarding gender, race, nutritional state, origin, or positive intradermal test. Of 126 rural dogs, 102 (80.5%) presented antibodies against gp43 antigen, and this was statistically significant in relation to the reactivity detected in urban dogs (P = 0.0001). Thus, dogs are commonly infected with P. brasiliensis, but they probably present natural resistance to develop paracoccidioidomycosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号