首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   11篇
  2022年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   5篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   7篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有80条查询结果,搜索用时 312 毫秒
21.

Background

The processes that drive fibrotic diseases are complex and include an influx of peripheral blood monocytes that can differentiate into fibroblast-like cells called fibrocytes. Monocytes can also differentiate into other cell types, such as tissue macrophages. The ability to discriminate between monocytes, macrophages, fibrocytes, and fibroblasts in fibrotic lesions could be beneficial in identifying therapies that target either stromal fibroblasts or fibrocytes.

Methodology/Principal Findings

We have identified markers that discriminate between human peripheral blood monocytes, tissue macrophages, fibrocytes, and fibroblasts. Amongst these four cell types, only peripheral blood monocytes express the combination of CD45RO, CD93, and S100A8/A9; only macrophages express the combination of CD45RO, 25F9, S100A8/A9, and PM-2K; only fibrocytes express the combination of CD45RO, 25F9, and S100A8/A9, but not PM-2K; and only fibroblasts express the combination of CD90, cellular fibronectin, hyaluronan, and TE-7. These markers are effective both in vitro and in sections from human lung. We found that markers such as CD34, CD68, and collagen do not effectively discriminate between the four cell types. In addition, IL-4, IL-12, IL-13, IFN-γ, and SAP differentially regulate the expression of CD32, CD163, CD172a, and CD206 on both macrophages and fibrocytes. Finally, CD49c (α3 integrin) expression identifies a subset of fibrocytes, and this subset increases with time in culture.

Conclusions/Significance

These results suggest that discrimination of monocytes, macrophages, fibrocytes, and fibroblasts in fibrotic lesions is possible, and this may allow for an assessment of fibrocytes in fibrotic diseases.  相似文献   
22.
Much remains to be understood about how a group of cells or a tissue senses and regulates its size. Dictyostelium discoideum cells sense and regulate the size of groups and fruiting bodies using a secreted 450-kDa complex of proteins called counting factor (CF). Low levels of CF result in large groups, and high levels of CF result in small groups. We previously found three components of CF (D. A. Brock and R. H. Gomer, Genes Dev. 13:1960-1969, 1999; D. A. Brock, R. D. Hatton, D.-V. Giurgiutiu, B. Scott, R. Ammann, and R. H. Gomer, Development 129:3657-3668, 2002; and D. A. Brock, R. D. Hatton, D.-V. Giurgiutiu, B. Scott, W. Jang, R. Ammann, and R. H. Gomer, Eukaryot. Cell 2:788-797, 2003). We describe here a fourth component, CF60. CF60 has similarity to acid phosphatases, although it has very little, if any, acid phosphatase activity. CF60 is secreted by starving cells and is lost from the 450-kDa CF when a different CF component, CF50, is absent. Although we were unable to obtain cells lacking CF60, decreasing CF60 levels by antisense resulted in large groups, and overexpressing CF60 resulted in small groups. When added to wild-type cells, conditioned starvation medium from CF60 overexpressor cells as well as recombinant CF60 caused the formation of small groups. The ability of recombinant CF60 to decrease group size did not require the presence of the CF component CF45-1 or countin but did require the presence of CF50. Recombinant CF60 does not have acid phosphatase activity, indicating that the CF60 bioactivity is not due to a phosphatase activity. Together, the data suggest that CF60 is a component of CF, and thus this secreted signal has four different protein components.  相似文献   
23.
The Dictyostelium rbrA gene encodes a putative Ariadne ubiquitin ligase. rbrA cells form defective slugs that cannot phototax. Prestalk cell numbers are reduced in rbrA slugs, and these prestalk cells do not localize to the tip of slugs. Chimeric slugs containing wild-type cells could phototax and form fruiting bodies.  相似文献   
24.
Developing Dictyostelium cells form structures containing approximately 20,000 cells. The size regulation mechanism involves a secreted counting factor (CF) repressing cytosolic glucose levels. Glucose or a glucose metabolite affects cell-cell adhesion and motility; these in turn affect whether a group stays together, loses cells, or even breaks up. NADPH-coupled aldehyde reductase reduces a wide variety of aldehydes to the corresponding alcohols, including converting glucose to sorbitol. The levels of this enzyme previously appeared to be regulated by CF. We find that disrupting alrA, the gene encoding aldehyde reductase, results in the loss of alrA mRNA and AlrA protein and a decrease in the ability of cell lysates to reduce both glyceraldehyde and glucose in an NADPH-coupled reaction. Counterintuitively, alrA- cells grow normally and have decreased glucose levels compared with parental cells. The alrA- cells form long unbroken streams and huge groups. Expression of AlrA in alrA- cells causes cells to form normal fruiting bodies, indicating that AlrA affects group size. alrA- cells have normal adhesion but a reduced motility, and computer simulations suggest that this could indeed result in the formation of large groups. alrA- cells secrete low levels of countin and CF50, two components of CF, and this could partially account for why alrA- cells form large groups. alrA- cells are responsive to CF and are partially responsive to recombinant countin and CF50, suggesting that disrupting alrA inhibits but does not completely block the CF signal transduction pathway. Gas chromatography/mass spectroscopy indicates that the concentrations of several metabolites are altered in alrA- cells, suggesting that the Dictyostelium aldehyde reductase affects several metabolic pathways in addition to converting glucose to sorbitol. Together, our data suggest that disrupting alrA affects CF secretion, causes many effects on cellular metabolism, and has a major effect on group size.  相似文献   
25.
Inhibition of fibrocyte differentiation by serum amyloid P   总被引:5,自引:0,他引:5  
Wound healing and the dysregulated events leading to fibrosis both involve the proliferation and differentiation of fibroblasts and the deposition of extracellular matrix. Whether these fibroblasts are locally derived or from a circulating precursor population is unclear. Fibrocytes are a distinct population of fibroblast-like cells derived from peripheral blood monocytes that enter sites of tissue injury to promote angiogenesis and wound healing. We have found that CD14(+) peripheral blood monocytes cultured in the absence of serum or plasma differentiate into fibrocytes within 72 h. We purified the factor in serum and plasma that prevents the rapid appearance of fibrocytes, and identified it as serum amyloid P (SAP). Purified SAP inhibits fibrocyte differentiation at levels similar to those found in plasma, while depleting SAP reduces the ability of plasma to inhibit fibrocyte differentiation. Compared with sera from healthy individuals and patients with rheumatoid arthritis, sera from patients with scleroderma and mixed connective tissue disease, two systemic fibrotic diseases, were less able to inhibit fibrocyte differentiation in vitro and had correspondingly lower serum levels of SAP. These results suggest that low levels of SAP may thus augment pathological processes leading to fibrosis. These data also suggest mechanisms to inhibit fibrosis in chronic inflammatory conditions, or conversely to promote wound healing.  相似文献   
26.
Many cells appear to secrete factors called chalones that limit their proliferation, but in most cases the factors have not been identified. We found that growing Dictyostelium cells secrete a 60 kDa protein called AprA for autocrine proliferation repressor. AprA has similarity to putative bacterial proteins of unknown function. Compared with wild-type cells, aprA-null cells proliferate faster, while AprA overexpressing cells proliferate slower. Growing wild-type cells secrete a factor that inhibits the proliferation of wild-type and aprA- cells; this activity is not secreted by aprA- cells. AprA purified by immunoprecipitation also slows the proliferation of wild-type and aprA- cells. Compared with wild type, there is a higher percentage of multinucleate cells in the aprA- population, and when starved, aprA- cells form abnormal structures that contain fewer spores. AprA may thus decrease the number of multinucleate cells and increase spore production. Together, the data suggest that AprA functions as part of a Dictyostelium chalone.  相似文献   
27.
Dictyostelium Crp is a member of the cyclin-dependent kinase (Cdk) family of proteins. It is most related in sequence to mammalian Cdk5, which unlike other members of the family, has functions that are unrelated to the cell cycle. In order to better understand the function of Crp in Dictyostelium, we overexpressed a dominant negative form, Crp-D144N, under the control of the actin 15 promoter. Cells overexpressing Crp-D144N exhibit a reduced growth rate in suspension culture and reduced rates of fluid-phase endocytosis and phagocytosis. There is no reduction in Cdc2 kinase activity in extracts from cells overexpressing Crp-D144N, suggesting that the growth defect is not due to inhibition of Cdc2. In addition to the growth defect, the act15::crp-D144N transformants aggregate at a slower rate than wild-type cells and form large aggregation streams. These eventually break up to form small aggregates and most of these do not produce mature fruiting bodies. The aggregation defect is fully reversed in the presence of wild-type cells but terminal differentiation is only partially rescued. In act15::crp-D144N transformants, the countin component of the counting factor, a secreted protein complex that regulates the breakup of streams, mostly appears outside the cell as degradation products and the reduced level of the intact protein may at least partially account for the initial formation of the large aggregation streams. Our observations indicate that Crp is important for both endocytosis and efflux and that defects in these functions lead to reduced growth and aberrant development.  相似文献   
28.
In Dictyostelium discoideum, the initial differentiation of cells is regulated by the phase of the cell cycle at starvation. Cells in S and early G2 (or with a low DNA content) have relatively high levels of cellular Ca2+ and display a prestalk tendency after starvation, whereas cells in mid to late G2 (or with a high DNA content) have relatively low levels of Ca2+ and display a prespore tendency. We found that there is a correlation between cytosolic Ca2+ and cell cycle phase, with high Ca2+ levels being restricted to cells in the S and early G2 phases. As expected on the basis of this correlation, cell cycle inhibitors influence the proportions of amoebae containing high or low Ca2+. However, it has been reported that in the rtoA mutant, which upon differentiation gives rise to many more stalk cells than spores (compared to the wild type), initial cell-type choice is independent of cell cycle phase at starvation. In contrast to the wild type, a disproportionately large fraction of rtoA amoebae fall into the high Ca2+ class, possibly due to an altered ability of this mutant to transport Ca2+.  相似文献   
29.
In submerged monolayer culture, Dictyostelium cells can differentiate into prespore and prestalk cells at high cell densities in response to cAMP but not at low cell densities. However, cells at low densities will differentiate in medium taken from developing cells starved at a high density. The putative factor in the medium was designated CMF for conditioned medium factor (Mehdy and Firtel, Molec. cell. Biology 5, 705-713, 1985). In this report, we size-fractionate conditioned medium and show that the activity that allows low density cells to differentiate can be separated into high and low Mr (relative molecular mass) fractions. Interestingly, the two fractions both have the same activity and do not need to be combined to allow differentiation. The large conditioned medium factor is a protein, as determined by trypsin sensitivity, that can be purified to a single 80 x 10(3) Mr band on a silver-stained SDS-polyacrylamide gel, and has CMF activity at a concentration of approximately 4 pM (0.3 ng ml-1). Our results suggest that CMF is a secreted factor that functions in vivo as an indicator of cell density in starved cells. At high cell densities, the concentration of CMF is sufficient to enable cells to enter the multicellular stage of the developmental cycle. When present below a threshold concentration, cells do not initiate the expression of genes required for early development. This factor plays an essential role in the regulatory pathway necessary for cells to obtain the developmental competence to induce prestalk and prespore gene expression in response to cAMP.  相似文献   
30.
For both wound healing and the formation of a fibrotic lesion, circulating monocytes enter the tissue and differentiate into fibroblast-like cells called fibrocytes and pro-fibrotic M2a macrophages, which together with fibroblasts form scar tissue. Monocytes can also differentiate into classically activated M1 macrophages and alternatively activated M2 macrophages. The proteases thrombin, which is activated during blood clotting, and tryptase, which is released by activated mast cells, potentiate fibroblast proliferation and fibrocyte differentiation, but their effect on macrophages is unknown. Here we report that thrombin, tryptase, and the protease trypsin bias human macrophage differentiation towards a pro-fibrotic M2a phenotype expressing high levels of galectin-3 from unpolarized monocytes, or from M1 and M2 macrophages, and that these effects appear to operate through protease-activated receptors. These results suggest that proteases can initiate scar tissue formation by affecting fibroblasts, fibrocytes, and macrophages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号