首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   16篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2016年   8篇
  2015年   3篇
  2014年   5篇
  2013年   10篇
  2012年   7篇
  2011年   9篇
  2010年   5篇
  2009年   6篇
  2008年   4篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   9篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1992年   3篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
  1972年   1篇
排序方式: 共有116条查询结果,搜索用时 31 毫秒
51.
Choi WT  Tian S  Dong CZ  Kumar S  Liu D  Madani N  An J  Sodroski JG  Huang Z 《Journal of virology》2005,79(24):15398-15404
The chemokine receptor CXCR4 plays an important role as the receptor for the normal physiological function of stromal cell-derived factor 1alpha (SDF-1alpha) and the coreceptor for the entry of human immunodeficiency virus type 1 (HIV-1) into the cell. In a recent work (S. Tian et al., J. Virol. 79:12667-12673, 2005), we found that many residues throughout CXCR4 transmembrane (TM) and extracellular loop 2 domains are specifically involved in interaction with HIV-1 gp120, as most of these sites did not play a role in either SDF-1alpha binding or signaling. These results provided direct experimental evidence for the distinct functional sites on CXCR4 for HIV-1 and the normal ligand SDF-1alpha. To further understand the CXCR4-ligand interaction and to develop new CXCR4 inhibitors to block HIV-1 entry, we have recently generated a new family of unnatural chemokines, termed synthetically and modularly modified (SMM) chemokines, derived from the native sequence of SDF-1alpha or viral macrophage inflammatory protein II (vMIP-II). These SMM chemokines contain various de novo-designed sequence replacements and substitutions by d-amino acids and display more enhanced CXCR4 selectivity, binding affinities, and/or anti-HIV activities than natural chemokines. Using these novel CXCR4-targeting SMM chemokines as receptor probes, we conducted ligand binding site mapping experiments on a panel of site-directed mutants of CXCR4. Here, we provide the first experimental evidence demonstrating that SMM chemokines interact with many residues on CXCR4 TM and extracellular domains that are important for HIV-1 entry, but not SDF-1alpha binding or signaling. The preferential overlapping in the CXCR4 binding residues of SMM chemokines with HIV-1 over SDF-1alpha illustrates a mechanism for the potent HIV-1 inhibition by these SMM chemokines. The discovery of distinct functional sites or conformational states influenced by these receptor sites mediating different functions of the natural ligand versus the viral or synthetic ligands has important implications for drug discovery, since the sites shared by SMM chemokines and HIV-1 but not by SDF-1alpha can be targeted for the development of selective HIV-1 inhibitors devoid of interference with normal SDF-1alpha function.  相似文献   
52.
We have used a focal infectivity method to quantitatively analyze the CD4, CXCR-4, and CCR-5 dependencies for infections by diverse primary patient (PR) and laboratory-adapted (LA) isolates of human immunodeficiency virus type 1 (HIV-1). Infectivities of T-cell-tropic viruses were analyzed in a panel of HeLa-CD4 cell clones that have distinct quantities of CD4 and in human astroglioma U87MG-CD4 cells that express a large quantity of CD4 and become highly susceptible to infection after transfection with a CXCR-4 expression vector. The latter analysis indicated that PR as well as LA T-cell-tropic viruses efficiently employ CXCR-4 as a coreceptor in an optimal human cell line that contains abundant CD4. Previous uncertainties regarding coreceptor usage by PR T-cell-tropic HIV-1 isolates may therefore have derived from the assay conditions. As reported previously, unrelated LA and PR T-cell-tropic HIV-1 isolates differ in infectivities for the HeLa-CD4 clonal panel, with LA viruses infecting all clones equally and PR viruses infecting the clones in proportion to cellular CD4 quantities (D. Kabat, S. L. Kozak, K. Wherly, and B. Chesebro, J. Virol. 68:2570-2577, 1994). To analyze the basis for this difference, we used the HeLa-CD4 panel to compare a molecularly cloned T-cell-tropic PR virus (ELI1) with six of its variants that grow to different extents in CD4-positive leukemic cell lines and that differ only at specific positions in their gp120 and gp41 envelope glycoproteins. All mutations in gp120 or gp41 that contributed to laboratory adaptation preferentially enhanced infectivity for cells that had little CD4 and thereby decreased the CD4 dependencies of the infections. There was a close correlation between abilities of T-cell-tropic ELI viruses to grow in an expanded repertoire of leukemic cell lines, the reduced CD4 dependencies of their infections of the HeLa-CD4 panel, and their sensitivities to inactivation by soluble CD4 (sCD4). Since all of the ELI viruses can efficiently use CXCR-4 as a coreceptor, we conclude that an increase in viral affinity for CD4 rather than a switch in coreceptor specificity is principally responsible for laboratory adaption of T-cell-tropic HIV-1. Syncytium-inducing activities of the ELI viruses, especially when analyzed on cells with low amounts of CD4, were also highly correlated with their laboratory-adapted properties. Results with macrophage-tropic HIV-1 were strikingly different in both coreceptor and CD4 dependencies. When assayed in HeLa-CD4 cells transfected with an expression vector for CCR-5, macrophage-tropic HIV-1 isolates that had been molecularly cloned shortly after removal from patients were equally infectious for cells that had low or high CD4 quantities. Moreover, despite their substantial infectivities for cells that had only a trace of CD4, macrophage-tropic isolates were relatively resistant to inactivation by sCD4. We conclude that T-cell-tropic PR viruses bind weakly to CD4 and preferentially infect cells that coexpress CXCR-4 and large amounts of CD4. Their laboratory adaptation involves corresponding increases in affinities for CD4 and in abilities to infect cells that have relatively little CD4. In contrast, macrophage-tropic HIV-1 appears to interact weakly with CD4 although it can infect cells that coexpress CCR-5 and small quantities of CD4. We propose that cooperative binding of macrophage-tropic HIV-1 onto CCR-5 and CD4 may enhance virus adsorption and infectivity for cells that have only a trace of CD4.  相似文献   
53.
The aim of this study was to determine the impact of diabetic macrosomia on cholesterol and lipoprotein metabolism. Age-related changes in the activities of serum LCAT, hepatic HMG-CoA reductase, cholesterol 7alpha-hydroxylase, and ACAT, the major enzymes involved in cholesterol metabolism, were determined in macrosomic offspring of streptozotocin-induced diabetic rats. Hepatic, serum, and lipoprotein cholesterol contents were also examined. Mild hyperglycemia in pregnant rats was induced by intraperitoneal injection of streptozotocin (40 mg/kg body weight) on day 5 of gestation. Control pregnant rats were injected with citrate buffer. At birth, macrosomic pups had higher serum, LDL-HDL(1), and HDL(2-3) cholesterol levels (P < 0.05) associated with increased LCAT activity (+57%) compared with control values. At 1 and 2 months of life, serum and lipoprotein cholesterol concentrations in macrosomic rats were similar to those of controls, whereas LCAT activity remained elevated about 1.5-fold. In addition, there was no change in hepatic cholesterol contents but hepatic HMG-CoA reductase, cholesterol 7alpha-hydroxylase, and ACAT activities were higher in both macrosomic males and females than in their respective controls (P < 0.01). By 3 months, macrosomic rats had developed hypercholesterolemia with a rise in all lipoproteins. Enzyme activities were still increased in these mature macrosomic rats, and hepatic cholesteryl esters were higher only in macrosomic females.These data demonstrate an overproduction, combined with overutilization, of cholesterol during the phase of rapid growth in macrosomic rats. However, cholesterol oversynthesis exceeded its removal and was a major contributor to hypercholesterolemia in adult macrosomic rats. In conclusion, macrosomia was associated with alterations in cholesterol metabolism through adulthood.  相似文献   
54.
The aim of this work was to investigate inflammatory, oxidative, and thrombotic parameters as biomarkers in farmers exposed to pesticides. Fifty farmers using chemical pesticides and 60 unexposed control men participated in this study. The Mediterranean diet compliance, the duration of pesticide use, and personal protection for pesticides handling were recorded using self-administered questionnaires. Serum biochemical parameters, oxidant/antioxidant, inflammatory, and thrombosis markers were determined. Our findings showed oxidative stress reflected by an increase in malondialdehyde, carbonyl proteins and superoxide anion levels and a decrease in vitamins C and E, glutathione, catalase, and superoxide dismutase activities in farmers. Serum C-reactive protein, prothrombin, and fibrinogen levels were enhanced in these farmers. In conclusion, inflammation, oxidative stress, and metabolic perturbations reflected the possibility of the effects of pesticides to farmers.  相似文献   
55.
This report describes an assay for the H1-receptor antagonist, terfenadine, and its two primary metabolites, terfenadine alcohol (TOH) and azacyclonol (AZ), using positive-ion, electrospray ionization–liquid chromatography–mass spectrometry. The assay was developed in support of kinetic studies of terfenadine oxidative metabolism in human liver and intestinal microsomes, which required quantification of incubate metabolites at low nanomolar concentrations. Terfenadine metabolites were extracted from basified microsomal incubates into methylene chloride. Reconstituted extracts were subject to liquid chromatographic separation on a cyano-reverse phase column. The [M+H]+ ions of terfenadine, terfenadine metabolites, and internal standard were monitored in the effluent by quadrupole mass spectrometry. The assay demonstrated linearity over an incubate concentration range of 5–250 and 12.5–1250 ng/ml for the metabolites and the parent drug, respectively. The respective limits of detection and quantitation for all three analytes were 1.5 and 5 ng/ml of microsomal incubate. Replicate analysis of quality control samples exhibited intra-day coefficients of variation ranging from 3.3% to 7.8% for the three analytes. The corresponding inter-day coefficients of variation ranged from 4.2% to 8.6%. The reproducibility and sensitivity of the assay, combined with the selectivity of mass spectrometric detection, should allow an accurate kinetic characterization of terfenadine oxidation mediated by the high affinity CYP3A enzymes in human liver and intestinal microsomes.  相似文献   
56.
The decisions that animals must make to achieve a balance between quantity and quality of resources become more difficult when their habitats are patchy and differ greatly in quality across space and time. Koalas are a prime subject to study this problem because they have a specialised diet of eucalypt leaves and need to balance nutrient and water intake against toxins in the leaves, all of which can change with soil type and climate. Koalas are nocturnal and spend most of the day resting and therefore choose trees for reasons other than feeding, particularly for thermoregulation. We GPS‐tracked 40 koalas over 3 yr to determine their shift in tree selection between day and night, and in relation to daily maximum temperature, in a patchy rural landscape in north‐western NSW, Australia. The species, degree of shelter, diameter, height and elevation of each visited tree were recorded. We used generalised linear mixed effects models to compare tree use between day and night and maximum daily temperature. Koalas used more feed‐trees during the night, and more shelter‐trees during the day. They also selected taller trees with more shelter in the day compared with night. As daytime temperatures rose, koalas increasingly selected taller trees at lower elevations. Our results demonstrate that koalas need taller trees, and non‐feed species with shadier/denser foliage, to provide shelter from heat. This highlights the need both for the retention of taller, mature trees, such as remnant paddock trees, and the planting of both food and shelter trees to increase habitat area and connectivity across the landscape for arboreal species. Retaining and planting trees that provide optimum habitat will help arboreal folivores cope with the more frequent droughts and heatwaves expected with climate change.  相似文献   
57.
Epizootic haemorrhagic disease virus (EHDV) infects wild ruminants, causing a frequently fatal haemorrhagic disease. However, it can also cause bluetongue-like disease in cattle, involving significant levels of morbidity and mortality, highlighting a need for more rapid and reliable diagnostic assays. EHDV outer-capsid protein VP2 (encoded by genome-segment 2 [Seg-2]) is highly variable and represents the primary target for neutralising antibodies generated by the mammalian host. Consequently VP2 is also the primary determinant of virus “serotype”, as identified in virus neutralisation tests (VNT). Although previous reports have indicated eight to ten EHDV serotypes, recent serological comparisons and molecular analyses of Seg-2 indicate only seven EHDV “types”. Oligonucleotide primers were developed targeting Seg-2, for use in conventional RT-PCR assays to detect and identify these seven types. These assays, which are more rapid and sensitive, still show complete agreement with VNT and were used to identify recent EHDV isolates from the Mediterranean region and North America.  相似文献   
58.
The loss of nitrogen (N) from field-applied animal manure through ammonia (NH3) volatilisation and nitrous oxide (N2O) emission is of major environmental concern. Both lime and dicyandiamide (DCD) have been suggested as amendments that can mitigate N2O emissions, but simultaneously increase the risk of NH3 volatilisation. This study evaluated the impact of lime and DCD on NH3 and N2O emissions following application of liquid hog manure. Hydrated lime (Ca(OH)2) was added to an acidic soil to achieve three pH levels (4.7, 6.3 and 7.4). Soil samples (100 g) were then placed in 500 ml screw-top Mason-jars and de-ionised water was added to bring the samples to 50, 70 and 90% water-filled pore space (WFPS). Slurry was applied at a rate equivalent to 116,000 l ha−1, while DCD was applied at 30% of the NH4-N rate applied. Jars were sealed and incubated at 21°C for 21 d. Ammonia volatilisation was quantified using boric acid traps, while N2O gas concentration was analysed using gas chromatography. Dicyandiamide had no effect (P>0.05) on either NH3 or N2O emissions. Both NH3 and N2O emissions increased (P<0.05) as WFPS increased, with emissions ranging from 0.9 to 1.4 kg NH3-N ha−1 and 123 to 353 g N2O-N ha−1, respectively. Liming decreased (P<0.01) N2O emissions from 547 to 46 g N2O-N ha−1, but increased (p<0.01) NH3 volatilisation from 0.36 to 1.92 kg NH3-N ha−1. Results suggest that liming to a pH ≥6.3 can reduce N2O emissions, however, this reduction will be accompanied by a substantial loss of NH3. Section Editor: H. Lambers  相似文献   
59.
Eight newly synthesized carbacylamidophosphates with the general formula RC(O)NHP(O)Cl2 with R = pCl–C6H4 1a, pBr–C6H4 2a, C6H5 3a, and pMe–C6H4 4a and RC(O)NHP(O)(NC4H8O)2 R = pCl–C6H4 1b, pBr–C6H4 2b, C6H5 3b, pMe–C6H4 4b, were selected to compare the inhibition kinetic parameters, IC50, Ki, kp and KD, on human erythrocyte acetylcholinesterase (hAChE) and bovine serum butyrylcholinesterase (BuChE), Also, the in vivo inhibition potency of compound 2a, 2b and 3a, were studied. The data demonstrates that compound 2a and compound 2b are the potent sensitive as AChE and BuChE inhibitors respectively, and the inhibition of hAChE is about 10-fold greater than that of BuChE.  相似文献   
60.
Carbacylamidophosphates with the general formula RC(O)NHP(O)R1R2 constitute organophosphorus compounds that are used as insecticides, pesticides and ureas inhibitors. In this work, we studied the inhibition potency of CCl3C(O)NHP(O)Cl21, CHCl2C(O)NHP(O)Cl22, CH2ClC(O)NHP(O)Cl23 and CF3C(O)NHP(O)Cl24, which are the major intermediates for carbacylamidophosphates synthesis towards human erythrocyte acetylcholinesterase (hAChe) activity using Ellman's modified kinetic method. Unexpectedly, it was observed that they were not only hydrolytically unstable but also inhibited hAChE in a similar manner to that produced by organophosphorus insecticides. Enzymatic data, bimolecular inhibition rate constants (ki) and IC50 values for inhibition of hAChE demonstrated that they are irreversible inhibitors and the inhibition potency of compound 2 (IC50 = 88 μM) was the greatest in comparison with compounds 1, 3 and 4. Also the electropositivity of the phosphorus atom and the hydrophobicity of the compounds demonstrated that these two factors play an additional effect and different role in the inhibitory activity of these compounds. Hydrolytic stability of the compounds was determined by 31P NMR monitoring of the loss of the parent molecules with D2O as a function of time. This study considers antiacetylcholinesterase activity according to the structural and the electronic aspects of compounds 14, according to IR, 1H, 13C and 31P NMR spectral data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号