首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   11篇
  2017年   2篇
  2016年   5篇
  2015年   5篇
  2014年   8篇
  2013年   8篇
  2012年   3篇
  2011年   7篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   7篇
  2006年   6篇
  2005年   5篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   9篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1989年   6篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   3篇
  1981年   5篇
  1980年   1篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
  1974年   4篇
  1973年   3篇
  1971年   3篇
  1970年   2篇
  1967年   2篇
  1966年   1篇
  1964年   1篇
  1952年   1篇
  1951年   1篇
  1944年   3篇
  1943年   1篇
  1934年   1篇
排序方式: 共有177条查询结果,搜索用时 31 毫秒
51.
The mechanisms that establish behavioral, cognitive, and neuroanatomical asymmetries are poorly understood. In this study, we analyze the events that regulate development of asymmetric nuclei in the dorsal forebrain. The unilateral parapineal organ has a bilateral origin, and some parapineal precursors migrate across the midline to form this left-sided nucleus. The parapineal subsequently innervates the left habenula, which derives from ventral epithalamic cells adjacent to the parapineal precursors. Ablation of cells in the left ventral epithalamus can reverse laterality in wild-type embryos and impose the direction of CNS asymmetry in embryos in which laterality is usually randomized. Unilateral modulation of Nodal activity by Lefty1 can also impose the direction of CNS laterality in embryos with bilateral expression of Nodal pathway genes. From these data, we propose that laterality is determined by a competitive interaction between the left and right epithalamus and that Nodal signaling biases the outcome of this competition.  相似文献   
52.
The Escherichia coli disulfide bond isomerase DsbC rearranges incorrect disulfide bonds during oxidative protein folding. It is specifically activated by the periplasmic N-terminal domain (DsbDalpha) of the transmembrane electron transporter DsbD. An intermediate of the electron transport reaction was trapped, yielding a covalent DsbC-DsbDalpha complex. The 2.3 A crystal structure of the complex shows for the first time the specific interactions between two thiol oxidoreductases. DsbDalpha is a novel thiol oxidoreductase with the active site cysteines embedded in an immunoglobulin fold. It binds into the central cleft of the V-shaped DsbC dimer, which assumes a closed conformation on complex formation. Comparison of the complex with oxidized DsbDalpha reveals major conformational changes in a cap structure that regulates the accessibility of the DsbDalpha active site. Our results explain how DsbC is selectively activated by DsbD using electrons derived from the cytoplasm.  相似文献   
53.
Plasma osteocalcin, a marker of osteoblastic activity, is reduced in starvation, malnutrition, and anorexia nervosa, resulting in low bone turnover osteoporosis. Contradictory findings about the role of leptin as a link between nutritional status and bone physiology have been reported. We demonstrate that leptin-deficient ob/ob and leptin-resistant db/db male mice have increased plasma osteocalcin, and that in male ob/ob mice osteocalcin is not decreased by starvation, unlike control mice. Intraperitoneal leptin administration increased plasma osteocalcin in male ob/ob mice, and prevented its fall during 24h fasting and 5 days of food restriction in normal male mice. This effect may be mediated via actions on the hypothalamic-pituitary-testicular or -growth hormone axes, or a direct action on osteoblasts. These studies support the hypothesis that the fall in leptin during starvation and weight loss is responsible for the associated reduction in osteoblast activity, and suggest a role for leptin in regulating bone turnover.  相似文献   
54.
The entire mitochondrial genome was sequenced in a prostriate tick, Ixodes hexagonus, and a metastriate tick, Rhipicephalus sanguineus. Both genomes encode 22 tRNAs, 13 proteins, and two ribosomal RNAs. Prostriate ticks are basal members of Ixodidae and have the same gene order as Limulus polyphemus. In contrast, in R. sanguineus, a block of genes encoding NADH dehydrogenase subunit 1 (ND1), tRNA(Leu)(UUR), tRNA(Leu)(CUN), 16S rDNA, tRNA(Val), 12S rDNA, the control region, and the tRNA(Ile) and tRNA(Gln) have translocated to a position between the tRNA(Glu) and tRNA(Phe) genes. The tRNA(Cys) gene has translocated between the control region and the tRNA(Met) gene, and the tRNA(Leu)(CUN) gene has translocated between the tRNA(Ser)(UCN) gene and the control region. Furthermore, the control region is duplicated, and both copies undergo concerted evolution. Primers that flank these rearrangements confirm that this gene order is conserved in all metastriate ticks examined. Correspondence analysis of amino acid and codon use in the two ticks and in nine other arthropod mitochondrial genomes indicate a strong bias in R. sanguineus towards amino acids encoded by AT-rich codons.   相似文献   
55.
Using the strictly neutral model as a null hypothesis, we tested for deviations from expected levels of nucleotide polymorphism at the alcohol dehydrogenase locus (Adh-1) within and among four species of pocket gophers (Geomys bursarius major, G. knoxjonesi, G. texensis llanensis, and G. attwateri). The complete protein-encoding region was examined, and 10 unique alleles, representing both electromorphic and cryptic alleles, were used to test hypotheses (e.g., the neutral model) concerning the maintenance of genetic variation. Nineteen variable sites were identified among the 10 alleles examined, including 9 segregating sites occurring in synonymous positions and 10 that were nonsynonymous. Several statistical methods, including those that test for within-species variation as well as those that examine variation within and among species, failed to reject the null hypothesis that variation (both within and between species of Geomys) at the Adh locus is consistent with the neutral theory. However, there was significant heterogeneity in the ratio of polymorphism to divergence across the gene, with polymorphisms clustered in the first half of the coding region and fixed differences clustered in the second half of the gene. Two alternative hypotheses are discussed as possible explanations for this heterogeneity: an old balanced polymorphism in the first half of the gene or a recent selective sweep in the second half of the gene.   相似文献   
56.
57.
In Xenopus, the primary neurons form in three domains either side of the midline in the posterior neurectoderm. At the late neurula stage there are approximately 120 primary sensory neurons on each side of the embryo. Co-injecting synthetic mRNA encoding retinoic acid receptor alpha (NR1B1) and retinoid X receptor beta (NR2B2) results in an increase in the number of primary neurons and this is further enhanced by the addition of retinoic acid indicating that elevated retinoid signalling promotes an increase in the number of cells undergoing primary neurogenesis. However, primary neurogenesis remains confined to the three domains that normally give rise to primary neurons indicating that not all regions of the neurectoderm respond equivalently to elevated retinoid signalling. The inhibition of retinoid signalling with a dominant negative retinoid receptor or treatment with citral, an inhibitor of retinoid metabolism, inhibits the formation of primary neurons. However, the lateral extent of the neurectoderm does not differ following these experimental manipulations suggesting that changes in primary neuron cell number, in response to changes in retinoid signalling, cannot be accounted for by significant gains or losses of neurectoderm. In addition, two lines of evidence are presented to suggest that retinoid signalling affects primary neurogenesis by acting directly on the neurectoderm. First, animal caps neuralized by noggin undergo primary neurogenesis in response to retinoid signalling and second primary neurogenesis is elevated in neural conjugates in which the ectodermal, but not the mesodermal, component has been co-injected with RAR/RXR mRNA.  相似文献   
58.
Leptin, the adipocyte-derived plasma hormone, and CNS GLP-1 neurons reduce food intake and body weight. GLP-1 is produced in the CNS by post-translational processing of pre-proglucagon. ICV leptin administration prevented the reduction in hypothalamic GLP-1 peptide content seen in pair-fed food-restricted rats (P < 0.05). There was a significant overall positive correlation between pre-proglucagon mRNA expression in the NTS and hypothalamic GLP-1 peptide content (r = +0.34, P < 0.05). Intraperitoneal leptin administration also increased hypothalamic GLP-1 peptide in food-restricted mice (P < 0. 05). This supports the hypothesis that the anorectic actions of leptin are in part due to stimulation of GLP-1 neurons. Reduced CNS GLP-1 neuronal activity during food deprivation may act to stimulate feeding behaviour, and perhaps also inhibit hypothalamic LHRH neurons, as part of the neuroendocrine response to starvation.  相似文献   
59.
Histocompatibility antigens were determined in 30 patients with temporal arteritis, 27 patients with polymyalgia rheumatica, and 216 normal blood donors. HLA-B8 was significantly more common in patients with polymyalgia rheumatica (59%) and temporal arteritis (50%) than in the controls (27%). The findings of HLA-A10 in 26% of the patients with polymyalgia rheumatica compared with only 10% of the controls may be associated with the suggested immunological pathogenesis of the condition.  相似文献   
60.
Yersinia pseudotuberculosis forms biofilms on Caenorhabditis elegans which block nematode feeding. This genetically amenable host-pathogen model has important implications for biofilm development on living, motile surfaces. Here we show that Y. pseudotuberculosis biofilm development on C. elegans is governed by N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) since (i) AHLs are produced in nematode associated biofilms and (ii) Y. pseudotuberculosis strains expressing an AHL-degrading enzyme or in which the AHL synthase (ypsI and ytbI) or response regulator (ypsR and ytbR) genes have been mutated, are attenuated. Although biofilm formation is also attenuated in Y. pseudotuberculosis strains carrying mutations in the QS-controlled motility regulator genes, flhDC and fliA, and the flagellin export gene, flhA, flagella are not required since fliC mutants form normal biofilms. However, in contrast to the parent and fliC mutant, Yop virulon proteins are up-regulated in flhDC, fliA and flhA mutants in a temperature and calcium independent manner. Similar observations were found for the Y. pseudotuberculosis QS mutants, indicating that the Yop virulon is repressed by QS via the master motility regulator, flhDC. By curing the pYV virulence plasmid from the ypsI/ytbI mutant, by growing YpIII under conditions permissive for type III needle formation but not Yop secretion and by mutating the type III secretion apparatus gene, yscJ, we show that biofilm formation can be restored in flhDC and ypsI/ytbI mutants. These data demonstrate that type III secretion blocks biofilm formation and is reciprocally regulated with motility via QS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号