首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1891篇
  免费   257篇
  国内免费   3篇
  2021年   25篇
  2016年   23篇
  2015年   38篇
  2014年   32篇
  2013年   54篇
  2012年   69篇
  2011年   68篇
  2010年   37篇
  2009年   44篇
  2008年   59篇
  2007年   58篇
  2006年   65篇
  2005年   60篇
  2004年   78篇
  2003年   52篇
  2002年   55篇
  2001年   66篇
  2000年   65篇
  1999年   51篇
  1998年   33篇
  1997年   25篇
  1996年   31篇
  1995年   31篇
  1994年   19篇
  1993年   30篇
  1992年   40篇
  1991年   37篇
  1990年   56篇
  1989年   56篇
  1988年   54篇
  1987年   50篇
  1986年   48篇
  1985年   51篇
  1984年   37篇
  1983年   28篇
  1982年   31篇
  1981年   34篇
  1980年   27篇
  1979年   32篇
  1978年   26篇
  1977年   28篇
  1976年   33篇
  1975年   29篇
  1974年   29篇
  1973年   30篇
  1972年   25篇
  1971年   21篇
  1970年   20篇
  1969年   16篇
  1968年   18篇
排序方式: 共有2151条查询结果,搜索用时 15 毫秒
151.
152.
153.
154.
The COVID‐19 pandemic has triggered a new bout of anti‐vaccination propaganda. These are often grounded in pseudoscience and misinterpretation of evolutionary biology. Subject Categories: Economics, Law & Politics, Microbiology, Virology & Host Pathogen Interaction, Science Policy & Publishing

Towards the end of summer of 2021, there seemed cause for cautious optimism for putting this pandemic behind us. It was clear that the route of viral transmission was airborne and not via surfaces (Goldman, 2021a), which means that masks are very efficient at reducing the spread of SARS‐CoV‐2. The number of cases in the United States and Europe were declining, and the first vaccines became available with many people lining up to get their jabs. But not all. A significant portion of the population have been refusing to get vaccinated, some of whom were fooled or encouraged by pseudoscientific misinformation propagated on the Internet.  相似文献   
155.
Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAPTg;Gfap+/R236H) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAPTg;Gfap+/R236H versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD. Relative protein-level differences were confirmed by a targeted proteomics assay, including proteins related to astrocytes and oligodendrocytes. Of particular interest was the decreased level of the oligodendrocyte protein, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (Ugt8), since Ugt8-deficient mice exhibit a phenotype similar to GFAPTg;Gfap+/R236H mice (e.g., tremors, ataxia, hind-limb paralysis). In addition, decreased levels of myelin-associated proteins were found in the GFAPTg;Gfap+/R236H mice, consistent with the role of Ugt8 in myelin synthesis. Fabp7 upregulation in GFAPTg;Gfap+/R236H mice was also selected for further investigation due to its uncharacterized association to AxD, critical function in astrocyte proliferation, and functional ability to inhibit the anti-inflammatory PPAR signaling pathway in models of amyotrophic lateral sclerosis (ALS). Within Gfap+ astrocytes, Fabp7 was markedly increased in the hippocampus, a brain region subjected to extensive pathology and chronic reactive gliosis in GFAPTg;Gfap+/R236H mice. Last, to determine whether the findings in GFAPTg;Gfap+/R236H mice are present in the human condition, AxD patient and control samples were analyzed by Western blot, which indicated that Type I AxD patients have a significant fourfold upregulation of FABP7. However, immunohistochemistry analysis showed that UGT8 accumulates in AxD patient subpial brain regions where abundant amounts of Rosenthal fibers are located, which was not observed in the GFAPTg;Gfap+/R236H mice.  相似文献   
156.
A new class of antibacterial agents for Gram-negative bacteria, rationally designed to inhibit the incorporation of 3-deoxy-D-manno-octulosonate into lipopolysaccharide (LPS), was recently reported. In Salmonella typhimurium, where the lipid A species are well characterised, it was previously demonstrated that the addition of a compound which inhibits the enzyme 3-deoxy-manno-octulosonate cytidylytransferase (CMP-KDO synthetase; EC 2.7.7.38) leads to rapid accumulation of lipid A derivatives. The major lipid A species, IVA (O-(2-amino-2-deoxy-beta-D-glucopyranosyl)-(1-6)-2-amino-2-deoxy-alpha-D - glucose, acylated at positions 2, 3, 2', 3' with beta-hydroxymyristoyl groups and bearing phosphates at positions 1 and 4'), was shown to be converted mainly to LPS by pulse-chase experiments in the absence of inhibitor. Labelled precursor (IVA) was also chased to other more polar lipid A derivatives. During chase in the presence of inhibitor, there was no conversion to LPS, while the major lipid A species was converted to the same polar lipid A derivatives as in chase without inhibitor. Our data indicate that despite the accumulation of several species of lipid A derivatives during inhibition of LPS synthesis, only IVA is destined for synthesis of mature LPS when LPS synthesis resumes. The more polar lipid A derivatives would thus represent aberrant side reaction products which occur when the pathway is inhibited.  相似文献   
157.
158.
Binding of pyrophosphate or two phosphate molecules to the pyrophosphatase (PPase) active site occurs at two subsites, P1 and P2. Mutations at P2 subsite residues (Y93F and K56R) caused a much greater decrease in phosphate binding affinity of yeast PPase in the presence of Mn(2+) or Co(2+) than mutations at P1 subsite residues (R78K and K193R). Phosphate binding was estimated in these experiments from the inhibition of ATP hydrolysis at a sub-K(m) concentration of ATP. Tight phosphate binding required four Mn(2+) ions/active site. These data identify P2 as the high affinity subsite and P1 as the low affinity subsite, the difference in the affinities being at least 250-fold. The time course of five "isotopomers" of phosphate that have from zero to four (18)O during [(18)O]P(i)-[(16)O]H(2)O oxygen exchange indicated that the phosphate containing added water is released after the leaving group phosphate during pyrophosphate hydrolysis. These findings provide support for the structure-based mechanism in which pyrophosphate hydrolysis involves water attack on the phosphorus atom located at the P2 subsite of PPase.  相似文献   
159.
Tensile stress and strain are known to induce vascular cell proliferation, a process that is physiologically counterbalanced by cell death. Here we investigate whether tensile stress and strain regulate vascular-cell death by using an end-to-end anastomosed rat vein graft model. In such a model, the circumferential tensile stress in the graft wall was increased by approximately 140 times immediately after surgery compared with that in the venous wall. This change was associated with an increase in the percentage of TUNEL-positive cells at 1, 6, 24, 120, 240, and 720h with two distinct peaks at 1 and 24h (10.1+/-3.5 and 14.4+/-3.2%, respectively) compared with that in control jugular veins (0.4+/-0.5 and 0.5+/-0.5% at 1 and 24h, respectively). When tensile stress and strain in the vein graft wall were reduced by using a biomechanical engineering approach, the rate of cell death was reduced significantly (3.6+/-1.1 and 1.6+/-0.5% at 1 and 24h, respectively). Furthermore, DEVD-CHO, a tetrapeptide aldehyde that inhibits the activity of caspase 3, significantly suppressed this event. These results suggest that a step increase in tensile stress and strain in experimental vein grafts induces rapid cell death, which is possibly mediated by cell death signaling mechanisms.  相似文献   
160.
Fabry disease results from deficient alpha-galactosidase A (alpha-Gal A) activity and the pathologic accumulation of the globotriaosylceramide (GL-3) and related glycosphingolipids, primarily in vascular endothelial lysosomes. Treatment is currently palliative, and affected patients generally die in their 40s or 50s. Preclinical studies of recombinant human alpha-Gal A (r-halphaGalA) infusions in knockout mice demonstrated reduction of GL-3 in tissues and plasma, providing rationale for a phase 1/2 clinical trial. Here, we report a single-center, open-label, dose-ranging study of r-halphaGalA treatment in 15 patients, each of whom received five infusions at one of five dose regimens. Intravenously administered r-halphaGalA was cleared from the circulation in a dose-dependent manner, via both saturable and non-saturable pathways. Rapid and marked reductions in plasma and tissue GL-3 were observed biochemically, histologically, and/or ultrastructurally. Clearance of plasma GL-3 was dose-dependent. In patients with pre- and posttreatment biopsies, mean GL-3 content decreased 84% in liver (n=13), was markedly reduced in kidney in four of five patients, and after five doses was modestly lowered in the endomyocardium of four of seven patients. GL-3 deposits were cleared to near normal or were markedly reduced in the vascular endothelium of liver, skin, heart, and kidney, on the basis of light- and electron-microscopic evaluation. In addition, patients reported less pain, increased ability to sweat, and improved quality-of-life measures. Infusions were well tolerated; four patients experienced mild-to-moderate reactions, suggestive of hypersensitivity, that were managed conservatively. Of 15 patients, 8 (53%) developed IgG antibodies to r-halphaGalA; however, the antibodies were not neutralizing, as indicated by unchanged pharmacokinetic values for infusions 1 and 5. This study provides the basis for a phase 3 trial of enzyme-replacement therapy for Fabry disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号