首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   12篇
  122篇
  2014年   6篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   5篇
  2009年   6篇
  2008年   6篇
  2007年   7篇
  2006年   3篇
  2005年   3篇
  2004年   7篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   3篇
  1997年   1篇
  1996年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1975年   2篇
  1973年   3篇
  1971年   2篇
  1970年   1篇
  1957年   1篇
  1956年   1篇
  1955年   1篇
  1941年   1篇
  1938年   1篇
  1937年   1篇
  1936年   1篇
  1929年   1篇
  1925年   1篇
  1924年   1篇
  1921年   1篇
  1915年   1篇
排序方式: 共有122条查询结果,搜索用时 0 毫秒
71.
72.

Background

Understanding how DNA sequence polymorphism relates to variation in gene expression is essential to connecting genotypic differences with phenotypic differences among individuals. Addressing this question requires linking population genomic data with gene expression variation.

Results

Using whole genome expression data and recent light shotgun genome sequencing of six Drosophila simulans genotypes, we assessed the relationship between expression variation in males and females and nucleotide polymorphism across thousands of loci. By examining sequence polymorphism in gene features, such as untranslated regions and introns, we find that genes showing greater variation in gene expression between genotypes also have higher levels of sequence polymorphism in many gene features. Accordingly, X-linked genes, which have lower sequence polymorphism levels than autosomal genes, also show less expression variation than autosomal genes. We also find that sex-specifically expressed genes show higher local levels of polymorphism and divergence than both sex-biased and unbiased genes, and that they appear to have simpler regulatory regions.

Conclusion

The gene-feature-based analyses and the X-to-autosome comparisons suggest that sequence polymorphism in cis-acting elements is an important determinant of expression variation. However, this relationship varies among the different categories of sex-biased expression, and trans factors might contribute more to male-specific gene expression than cis effects. Our analysis of sex-specific gene expression also shows that female-specific genes have been overlooked in analyses that only point to male-biased genes as having unusual patterns of evolution and that studies of sexually dimorphic traits need to recognize that the relationship between genetic and expression variation at these traits is different from the genome as a whole.  相似文献   
73.
74.
The covariation of biodiversity with climate is a fundamental pattern in nature. However, despite the ubiquity of this relationship, a consensus on the ultimate cause remains elusive. The evolutionary speed hypothesis posits direct mechanistic links between ambient temperature, the tempo of micro-evolution and, ultimately, species richness. Previous research has demonstrated faster rates of molecular evolution in warmer climates for a broad range of poikilothermic and homeothermic organisms, in both terrestrial and aquatic environments. In terrestrial systems, species richness increases with both temperature and water availability and the interaction of those terms: productivity. However, the influence of water availability as an independent variable on micro-evolutionary processes has not been examined previously. Here, using methodology that limits the potentially confounding role of cladogenetic and demographic processes, we report, to our knowledge, the first evidence that woody plants living in the arid Australian Outback are evolving more slowly than related species growing at similar latitudes in moist habitats on the mesic continental margins. These results support a modified evolutionary speed explanation for the relationship between the water-energy balance and plant diversity patterns.  相似文献   
75.
76.
Selenocysteine synthase of Escherichia coli catalyses the biosynthesis of selenocysteine in the form of the aminoacyl-tRNA complex, the reaction intermediate being aminoacrylyl-tRNA(sec) covalently bound to the prosthetic group of the enzyme. Selenocysteine synthase and the specific aminoacrylyl-tRNA(sec)-enzyme complex as well as the isolated seryl-tRNA(sec) were investigated in the electron microscope and analysed by means of image processing to a resolution of 2 nm in projection. The stoichiometric composition of the selenocysteine synthase molecule was elucidated by scanning transmission electron microscopic mass determination. The enzyme has a fivefold symmetric structure and consists of 10 monomers arranged in two rings. The tRNA is bound near the margin of the dimeric subunits. Principal component analysis of the tRNA-enzyme complexes revealed that the selenocysteine synthase appears to bind only one seryl-tRNA(sec) per dimer, which is consistent with the result of biochemical binding studies.  相似文献   
77.
A stochastic model for the chemotherapy of experimental tumors is presented. The focus of this model is on the presence of drug-resistant mutants and their influence on eventual treatment outcome. Equations are derived for the joint probability-generating function for the number of chemo-sensitive and chemo-resistant cells. The model is extended to two drugs and it is shown how the model may be used to make deductions regarding the optimum scheduling of therapy.  相似文献   
78.
The manipulation of lignin could, in principle, facilitate efficient biofuel production from plant biomass. Despite intensive study of the lignin pathway, uncertainty exists about the enzyme catalyzing the last step in syringyl (S) monolignol biosynthesis, the reduction of sinapaldehyde to sinapyl alcohol. Traditional schemes of the pathway suggested that both guaiacyl (G) and S monolignols are produced by a single substrate-versatile enzyme, cinnamyl alcohol dehydrogenase (CAD). This was challenged by the discovery of a novel sinapyl alcohol dehydrogenase (SAD) that preferentially uses sinapaldehyde as a substrate and that was claimed to regulate S lignin biosynthesis in angiosperms. Consequently, most pathway schemes now show SAD (or SAD and CAD) at the sinapaldehyde reduction step, although functional evidence is lacking. We cloned SAD from tobacco (Nicotiana tabacum) and suppressed it in transgenic plants using RNA interference-inducing vectors. Characterization of lignin in the woody stems shows no change to content, composition, or structure, and S lignin is normal. By contrast, plants additionally suppressed in CAD have changes to lignin structure and S:G ratio and have increased sinapaldehyde in lignin, similar to plants suppressed in CAD alone. These data demonstrate that CAD, not SAD, is the enzyme responsible for S lignin biosynthesis in woody angiosperm xylem.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号