首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   11篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   7篇
  2014年   10篇
  2013年   4篇
  2012年   11篇
  2011年   4篇
  2010年   8篇
  2009年   3篇
  2008年   6篇
  2007年   4篇
  2006年   5篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1993年   4篇
  1991年   3篇
  1990年   2篇
  1988年   4篇
  1987年   3篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有139条查询结果,搜索用时 15 毫秒
51.
52.
53.
Gorelik B  Goldblum A 《Proteins》2008,71(3):1373-1386
Multiple near-optimal conformations of protein-ligand complexes provide a better chance for accurate representation of biomolecular interactions, compared with a single structure. We present ISE-dock--a docking program which is based on the iterative stochastic elimination (ISE) algorithm. ISE eliminates values that consistently lead to the worst results, thus optimizing the search for docking poses. It constructs large sets of such poses with no additional computational cost compared with single poses. ISE-dock is validated using 81 protein-ligand complexes from the PDB and its performance was compared with those of Glide, GOLD, and AutoDock. ISE-dock has a better chance than the other three to find more than 60% top single poses under RMSD = 2.0 A and more than 80% under RMSD = 3.0 A from experimental. ISE alone produced at least one 3.0 A or better solutions among the top 20 poses in the entire test set. In 98% of the examined molecules, ISE produced solutions that are closer than 2.0 A from experimental. Paired t-tests (PTT) were used throughout to assess the significance of comparisons between the performances of the different programs. ISE-dock provides more than 100-fold docking solutions in a similar time frame as LGA in AutoDock. We demonstrate the usefulness of the large near optimal populations of ligand poses by showing a correlation between the docking results and experiments that support multiple binding modes in p38 MAP kinase (Pargellis et al., Nat Struct Biol 2002;9:268-272] and in Human Transthyretin (Hamilton, Benson, Cell Mol Life Sci 2001;58:1491-1521).  相似文献   
54.
Jun a 3, a major allergenic protein in mountain cedar pollen, causes seasonal allergic rhinitis in hypersensitive individuals. Recombinant Jun a 3 was expressed in Nicotiana benthamiana interstitial fluid (300 microg/g leaf material) and Pichia pastoris (100 microg/ml media). Polyclonal anti-Jun a 3 and IgE antibodies from the sera of allergic patients both reacted with the recombinant protein. Of the two systems, recombinant protein from the plant apoplast contained fewer contaminating proteins. This method allows for a more convenient and inexpensive expression of the recombinant allergen, which will allow for further structural studies and may prove useful in diagnostic and/or immunotherapeutic strategies for cedar allergy.  相似文献   
55.

Background  

Pichia stipitis xylose reductase (Ps-XR) has been used to design Saccharomyces cerevisiae strains that are able to ferment xylose. One example is the industrial S. cerevisiae xylose-consuming strain TMB3400, which was constructed by expression of P. stipitis xylose reductase and xylitol dehydrogenase and overexpression of endogenous xylulose kinase in the industrial S. cerevisiae strain USM21.  相似文献   
56.
The extracellular domain (ED) of the membrane-spanning sialoglycoprotein, mucin-1 (MUC1), is an in vivo substrate for the lysosomal sialidase, neuraminidase-1 (NEU1). Engagement of the MUC1-ED by its cognate ligand, Pseudomonas aeruginosa-expressed flagellin, increases NEU1-MUC1 association and NEU1-mediated MUC1-ED desialylation to unmask cryptic binding sites for its ligand. However, the mechanism(s) through which intracellular NEU1 might physically interact with its surface-expressed MUC1-ED substrate are unclear. Using reciprocal coimmunoprecipitation and in vitro binding assays in a human airway epithelial cell system, we show here that NEU1 associates with the MUC1-cytoplasmic domain (CD) but not with the MUC1-ED. Prior pharmacologic inhibition of the NEU1 catalytic activity using the NEU1-selective sialidase inhibitor, C9-butyl amide-2-deoxy-2,3-dehydro-N-acetylneuraminic acid, did not diminish NEU1-MUC1-CD association. In addition, glutathione-S-transferase (GST) pull-down assays using the deletion mutants of the MUC1-CD mapped the NEU1-binding site to the membrane-proximal 36 aa of the MUC1-CD. In a cell-free system, we found that the purified NEU1 interacted with the immobilized GST-MUC1-CD and the purified MUC1-CD associated with the immobilized 6XHis-NEU1, indicating that the NEU1-MUC1-CD interaction was direct and independent of its chaperone protein, protective protein/cathepsin A. However, the NEU1-MUC1-CD interaction was not required for the NEU1-mediated MUC1-ED desialylation. Finally, we demonstrated that overexpression of either WT NEU1 or a catalytically dead NEU1 G68V mutant diminished the association of the established MUC1-CD binding partner, PI3K, to MUC1-CD and reduced downstream Akt kinase phosphorylation. These results indicate that NEU1 associates with the juxtamembranous region of the MUC1-CD to inhibit PI3K-Akt signaling independent of NEU1 catalytic activity.  相似文献   
57.
Synonymous codons are not used equally in many organisms, and the extent of codon bias varies among loci. Earlier studies have suggested that more highly expressed loci in Drosophila melanogaster are more biased, consistent with findings from several prokaryotes and unicellular eukaryotes that codon bias is partly due to natural selection for translational efficiency. We link this model of varying selection intensity to the population-genetics prediction that the effectiveness of natural selection is decreased under reduced recombination. In analyses of 385 D. melanogaster loci, we find that codon bias is reduced in regions of low recombination (i.e., near centromeres and telomeres and on the fourth chromosome). The effect does not appear to be a linear function of recombination rate; rather, it seems limited to regions with the very lowest levels of recombination. The large majority of the genome apparently experiences recombination at a sufficiently high rate for effective natural selection against suboptimal codons. These findings support models of the Hill-Robertson effect and genetic hitchhiking and are largely consistent with multiple reports of low levels of DNA sequence variation in regions of low recombination.   相似文献   
58.
Bacterial lipopolysaccharide (LPS) influences pulmonary vascular endothelial barrier function in vitro. We studied whether LPS regulates endothelial barrier function through actin reorganization. Postconfluent bovine pulmonary artery endothelial cell monolayers were exposed to Escherichia coli 0111:B4 LPS 10 ng/ml or media for up to 6 h and evaluated for: (1) transendothelial 14C-albumin flux, (2) F-actin organization with fluorescence microscopy, (3) F-actin quantitation by spectrofluorometry, and (4) monomeric G-actin levels by the DNAse 1 inhibition assay. LPS induced increments in 14C-albumin flux (P < 0.001) and intercellular gap formation at ≥ 2–6 h. During this same time period the endothelial F-actin pool was not significantly changed compared to simultaneous media controls. Mean (±SE) G-actin (μg/mg total protein) was significantly (P < 0.002) increased compared to simultaneous media controls at 2, 4, and 6 h but not at 0.5 or 1 h. Prior F-actin stabilization with phallicidin protected against the LPS-induced increments in G-actin (P = 0.040) as well as changes in barrier function (P < 0.0001). Prior protein synthesis inhibition unmasked an LPS-induced decrement in F-actin (P = 0.0044), blunted the G-actin increment (P = 0.010), and increased LPS-induced changes in endothelial barrier function (P < 0.0001). Therefore, LPS induces pulmonary vascular endothelial F-actin depolymerization, intercellular gap formation, and barrier dysfunction. Over the same time period, LPS increased total actin (P < 0.0001) and new actin synthesis (P = 0.0063) which may be a compensatory endothelial cell response to LPS-induced F-actin depolymerization. © 1993 Wiley-Liss, Inc.  相似文献   
59.
We have determined the nucleotide sequence of a 1,200-base pair (bp) genomic fragment that includes the kappa-chain constant-region gene (C kappa) from two species of native Australian rodents, Rattus leucopus cooktownensis and Rattus colletti. Comparison of these sequences with each other and with other rodent C kappa genes shows three surprising features. First, the coding regions are diverging at a rate severalfold higher than that of the nearby noncoding regions. Second, replacement changes within the coding region are accumulating at a rate at least as great as that of silent changes. Third, most of the amino acid replacements are localized in one region of the C kappa domain--namely, the carboxy-terminal "bends" in the alpha-carbon backbone. These three features have previously been described from comparisons of the two allelic forms of C kappa genes in R. norvegicus. These data imply the existence of considerable evolutionary constraints on the noncoding regions (based on as yet undetermined functions) or powerful positive selection to diversify a portion of the constant-region domain (whose physiological significance is not known). These surprising features of C kappa evolution appear to be characteristic only of closely related C kappa genes, since comparison of rodent with human sequences shows the expected greater conservation of coding regions, as well as a predominance of silent nucleotide substitutions within the coding regions.   相似文献   
60.
Pollen from cedar and cypress trees is a major cause of seasonal hypersensitivity in humans in several regions of the Northern Hemisphere. We report the first crystal structure of a cedar allergen, Jun a 1, from the pollen of the mountain cedar Juniperus ashei (Cupressaceae). The core of the structure consists primarily of a parallel beta-helix, which is nearly identical to that found in the pectin/pectate lyases from several plant pathogenic microorganisms. Four IgE epitopes mapped to the surface of the protein are accessible to the solvent. The conserved vWiDH sequence is covered by the first 30 residues of the N terminus. The potential reactive arginine, analogous to the pectin/pectate lyase reaction site, is accessible to the solvent, but the substrate binding groove is blocked by a histidine-aspartate salt bridge, a glutamine, and an alpha-helix, all of which are unique to Jun a 1. These observations suggest that steric hindrance in Jun a 1 precludes enzyme activity. The overall results suggest that it is the structure of Jun a 1 that makes it a potent allergen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号