首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2277篇
  免费   307篇
  2584篇
  2021年   22篇
  2018年   21篇
  2016年   27篇
  2015年   41篇
  2014年   49篇
  2013年   61篇
  2012年   90篇
  2011年   99篇
  2010年   52篇
  2009年   41篇
  2008年   69篇
  2007年   84篇
  2006年   75篇
  2005年   72篇
  2004年   81篇
  2003年   65篇
  2002年   65篇
  2001年   78篇
  2000年   81篇
  1999年   69篇
  1998年   24篇
  1997年   38篇
  1996年   21篇
  1995年   25篇
  1994年   29篇
  1993年   24篇
  1992年   71篇
  1991年   73篇
  1990年   63篇
  1989年   64篇
  1988年   52篇
  1987年   47篇
  1986年   45篇
  1985年   46篇
  1984年   49篇
  1983年   49篇
  1982年   31篇
  1981年   26篇
  1980年   40篇
  1979年   31篇
  1978年   46篇
  1977年   40篇
  1976年   32篇
  1975年   41篇
  1974年   29篇
  1973年   34篇
  1972年   34篇
  1970年   28篇
  1969年   27篇
  1967年   22篇
排序方式: 共有2584条查询结果,搜索用时 8 毫秒
11.
A crucial enzyme in the pathway for protein degradation in Escherichia coli is protease La, an ATP-hydrolyzing protease encoded by the lon gene. This enzyme degrades various proteins to small polypeptides containing 10-20 amino acid residues. To learn more about its energy requirement, we determined the number of ATP molecules hydrolyzed by the purified protease for each peptide bond cleaved. The enzyme hydrolyzed about 2 molecules of ATP for each new amino group generated with casein, bovine serum albumin, glucagon, or guanidinated casein as substrates, even though these proteins differ up to 20-fold in size and 3-4 fold in rates of hydrolysis of peptide bonds. Similar values for the stoichiometry (from 1.9 to 2.4) were obtained using fluorescamine or 2,4,6-trinitrobenzene sulfonic acid to estimate the appearance of new amino groups. These values appeared lower at 1 mM than at 10 mM Mg2+. The coupling between ATP and peptide bond hydrolysis appeared very tight. However, when the protease was assayed under suboptimal conditions (e.g. at lower pH or with ADP present), many more ATP molecules (from 3.5 to 12) were consumed per peptide bond cleaved. Our data would indicate that the early steps in protein degradation consume almost as much energy (2 ATPs for each cleavage) as does the formation of peptide bonds during protein synthesis.  相似文献   
12.
13.
Free radical mechanisms in neocarzinostatin-induced DNA damage   总被引:7,自引:0,他引:7  
The molecular mechanisms by which the antitumor protein antibiotic, neocarzinostatin, interacts with DNA and causes DNA sugar damage is discussed. Physical binding of the nonprotein chromophore of neocarzinostatin to DNA, involving an intercalative process and dependent on the microheterogeneity of DNA structure, is followed by thiol activation of the drug to a probable radical species. The latter attacks the deoxyribose, especially at thymidylate residues, by abstracting a hydrogen atom from C-5' to generate a carbon-centered radical on the DNA. This nascent form of DNA damage either reacts with dioxygen to form a peroxyl radical derivative, which eventuates in a strand break with a nucleoside 5'-aldehyde at the 5'-end or reacts with the bound drug to form a novel drug-deoxyribose covalent adduct. Nitroaromatic radiation sensitizers can substitute for dioxygen, but the DNA damage products are different. Similarities between the various biological effects of neocarzinostatin and ionizing radiation are reviewed.  相似文献   
14.
When electrophoresed on an agarose gel, the DNA isolated from neocarzinostatin- (NCS-) treated HeLa cells migrates in a ladder of discrete bands indicative of preferential breakage in the linker region of the nucleosomes. The 5'-termini of the drug-induced DNA strand breaks were characterized by reduction of the nucleoside 5'-aldehyde ends to 5'-hydroxyls followed by incorporation of 32P from [gamma-32P]ATP by polynucleotide kinase and treatment of the DNA with hot alkali and alkaline phosphatase prior to the kinase assay to give the total 5'-termini. In DNA isolated from NCS-treated cells, nucleoside aldehyde accounts for 30-45% of the drug-generated 5' ends; the remainder have PO4 termini. By contrast, 5'-terminal nucleoside aldehyde in DNA cut with the drug in vitro exceeds 80% of the total 5' ends. Of the 32P representing nucleoside aldehyde in DNA from NCS-exposed cells, 77% is in TMP; the rest is in AMP much greater than CMP greater than GMP, a distribution in excellent agreement with that obtained for in vitro drug-treated DNA. DNA sequencing experiments, using the 340 base pair alphoid DNA fragment isolated from drug-treated cells, show that the pattern of breakage produced by NCS within a defined sequence of DNA in intact cells is similar to that in the in vitro reaction, with a preferential attack at thymidylate residues, but a much higher concentration of the drug was required to cause comparable breakage in intact cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
15.
16.
17.
Summary Developing rat incisors were treated with malachite green-aldehyde fixative solution (MGA), which retains and stains lipids. We observed positive staining occurring as dots in the basement membrane. Most of these dots (2–3.5 nm in diameter) were grouped in the lamina densa but some were also present in the lamina lucida and the lamina fibroreticularis. These data provide evidence for the existence of lipids in the dental basement membrane and suggest that they are distributed together with the various groups of proteins so far detected.  相似文献   
18.
Specific binding of o-phenanthroline at a DNA structural lesion.   总被引:2,自引:1,他引:1       下载免费PDF全文
DNA intercalators are found to recognize a DNA lesion as a high affinity receptor site. This lesion-specific binding is observed when one strand of a DNA double helix contains an extra, unpaired nucleotide. Our assay for binding controls for the effects of sequence with a series of oligodeoxynucleotide duplexes which are identical except for the location of the lesion, an extra cytidine. Scission of the series of oligodeoxynucleotides by the cuprous complex of ortho-phenanthroline (OP-Cu) indicates that OP-Cu binds at the lesion-specific stable intercalation site, suggesting that OP-Cu intercalates into DNA. The dispersion of OP-Cu scission sites over three residues is consistent with scission via a diffusible intermediate. The location of the scission sites, directly on the 3' side of the lesion, is consistent with minor groove binding in B DNA.  相似文献   
19.
Newly synthesized and endogenous proteoglycan was isolated from human femoral head osteochondrophytic spurs. 35SO4-containing keratan sulphate was measured by its susceptibility to endo-beta-D-galactosidase (keratanase) and comprised 15-17% of the two subpopulations of a proteoglycan monomer fraction (D1) resolved by Sepharose CL-2B chromatography (Kav (I), 0.22; (II), 0.78). The size of the newly synthesized keratan sulphate in these fractions was large (Mr greater than 7,000). The hydroxylamine cleavage product of a proteoglycan aggregate fraction (A1) which eluted in the void volume of a Sepharose CL-2B column was immunoreactive with an anti-keratan sulphate monoclonal antibody, 5-D-4. Unlike the proteoglycan aggregate A1 fraction from bovine nasal cartilage, immunoreactivity against 5-D-4 was also found in chromatographic fractions retarded by Sepharose CL-2B. These results lend additional support to our assertion that the osteophyte extracellular matrix consists of hyaline cartilage-type proteoglycan. Stimulation of osteophyte proliferation may be useful as a repair mechanism for resurfacing denuded areas of osteoarthritic femoral heads.  相似文献   
20.
The ability of Escherichia coli rapidly to degrade abnormal proteins is inhibited by mutations affecting any of several heat shock proteins (hsps). We therefore tested whether a short-lived mutant protein might become associated with hsps as part of its degradation. At 30 degrees C, the non-secreted mutant form of alkaline phosphatase, phoA61, is relatively stable, and very little phoA61 is found associated with the hsp dnaK. However, raising the temperature to 37 degrees C or 41 degrees C stimulated the degradation of this protein, and up to 30% of cellular phoA61 became associated with dnaK, as shown by immunoprecipitation and Western blot analysis. Also found in complexes with phoA61 were the hsps, protease La and grpE (but no groEL, or groES). The rapid degradation of phoA61 at 37 degrees C and 41 degrees C is in part by protease La, since it decreased by 50% in lon mutants. This process also requires dnaK, since deletion of this gene prevented phoA61 degradation almost completely (unless a wild-type dnaK gene was introduced). In contrast, the missense mutation, dnaK756, enhanced phoA61 degradation. The dnaK756 protein also was associated with phoA61, but this complex, unlike that containing wild-type dnaK could not be dissociated by ATP addition. Furthermore, in a grpE mutant, the degradation of phoA61 and the amount associated with dnaK increased, while in a dnaJ mutant, phoA61 degradation and its association with dnaK decreased. Thus, complex formation with dnaK appears essential for phoA61 degradation by protease La and some other cell proteases, and a failure of the dnaK to dissociate normally may accelerate proteolytic attack.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号