首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2441篇
  免费   324篇
  2021年   25篇
  2018年   22篇
  2016年   28篇
  2015年   52篇
  2014年   64篇
  2013年   77篇
  2012年   103篇
  2011年   107篇
  2010年   57篇
  2009年   53篇
  2008年   78篇
  2007年   91篇
  2006年   87篇
  2005年   79篇
  2004年   86篇
  2003年   70篇
  2002年   64篇
  2001年   87篇
  2000年   90篇
  1999年   70篇
  1998年   33篇
  1997年   38篇
  1996年   22篇
  1995年   28篇
  1994年   30篇
  1993年   25篇
  1992年   71篇
  1991年   73篇
  1990年   61篇
  1989年   65篇
  1988年   53篇
  1987年   49篇
  1986年   45篇
  1985年   45篇
  1984年   51篇
  1983年   50篇
  1982年   32篇
  1981年   27篇
  1980年   40篇
  1979年   32篇
  1978年   46篇
  1977年   40篇
  1976年   34篇
  1975年   41篇
  1974年   29篇
  1973年   34篇
  1972年   34篇
  1970年   28篇
  1969年   27篇
  1967年   23篇
排序方式: 共有2765条查询结果,搜索用时 31 毫秒
121.
122.
Human 92- and 72-kilodalton type IV collagenases are elastases.   总被引:30,自引:0,他引:30  
Elastin is critical to the structural integrity of a variety of connective tissues. Only a select group of enzymes has thus far been identified capable of cleaving insoluble elastin. Recently, we observed that human alveolar macrophages secrete elastase activity that is largely inhibited by the tissue inhibitor of metalloproteinases (TIMP). This finding suggested that one or more of the metalloproteinases released by alveolar macrophages has elastase activity. Accordingly, we tested pure human interstitial collagenase, stromelysin, 92-kDa type IV collagenase, and 72-kDa type IV collagenase for elastolytic activity using kappa-elastin zymography and insoluble 3H-labeled elastin. The 92- and 72-kDa type IV collagenases were found to be elastolytic in both assay systems. A recombinant preparation of 92-kDa type IV collagenase with gelatinolytic activity was also found to be elastolytic. Organomercurial activation was essential to detect elastolytic activity of the native 92- and 72-kDa type IV collagenases and enhanced the elastase activity of the recombinant 92-kDa enzyme. On a molar basis the recombinant 92-kDa type IV collagenase was approximately 30% as active as human leukocyte elastase in solubilizing 3H-labeled elastin. Exogenously added TIMP in significant molar excess abolished the elastase activity of the 92- and 72-kDa type IV collagenases. Stromelysin and interstitial collagenase showed no significant elastolytic activity, although both were catalytically active against susceptible substrates. Conditioned media from cultures of human mononuclear phagocytes containing the 92-kDa enzyme produced a distinct zone of lysis in the kappa-elastin zymograms at this molecular mass. These results definitively extend the spectrum of human proteinases with elastolytic activity to metalloproteinases and suggest the enzymatic basis for elastase activity observed with certain cell types such as human alveolar macrophages.  相似文献   
123.
124.
Effects of various nutritional and environmental factors on the accumulation of organic acids (mainly L-malic acid) by the filamentous fungus Aspergillus flavus were studied in a 16-L stirred fermentor. Improvement of the molar yield (moles acid produced per moles glucose consumed) of L-malic acid was obtained mainly by increasing the agitation rate (to 350 rpm) and the Fe(z+) ion concentration (to 12 mg/L) and by lowering the nitrogen (to 271 mg/L) and phosphate concentrations (to 1.5 mM) in the medium. These changes resulted in molar yields for L-malic acid and total C(4) acids (L-malic, succinic, and fumaric acids) of 128 and 155%, respectively. The high molar yields obtained (above 100%) are additional evidence for the operation of part of the reductive branch of the tricarboxylic acid cycle in L-malic acid accumulation by A. flavus. The fermentation conditions developed using the above mentioned factors and 9% CaCO(3) in the medium resulted in a high concentration (113 g/L L-malic acid from 120 g/L glucose utilized) and a high overall productivity (0.59 g/L h) of L-malic acid. These changes in acid accumulation coincide with increases in the activities of NAD(+)-malate dehydrogenase, fumarase, and citrate synthase.  相似文献   
125.
126.
Escherichia coli HIT-1 has a mutation in the Na+/H+ antiporter gene, nhaB (P. Thelen, T. Tsuchiya, and E. B. Goldberg, J. Bacteriol. 173:6553-6557, 1991). This strain is not able to utilize serine as a carbon source (T. Ishikawa, H. Hama, M. Tsuda, and T. Tsuchiya, J. Biol. Chem. 262:7443-7446, 1987), because an active NhaB is required to maintain the electrochemical potential of Na+, which drives serine transport via the Na+/serine carrier, the major transport system for serine. We isolated recombinant cells from a cross between strains HIT-1 and Hfr, and these cells were able to grow on serine even though the NhaB Na+/H+ antiporter of the recombinant cells was still defective. We found that the activity of the H+/serine cotransport system, one of the minor serine transport systems in E. coli, was elevated in the recombinant cells. H+/serine cotransport activity was induced by leucine in the recombinant cells more strongly than in strain HIT-1. A kinetic analysis showed that the Vmax, but not the Km, of the transport system was much higher in the recombinant cells than in strain HIT-1 cells.  相似文献   
127.
Biopterin, 6-hydroxymethyl-pterin, isoxanthopterin, neopterin and, pterin were quantified in stress-free collected spontaneous morning urine samples from Callithrix jacchus, Saguinus fuscicollis, Saguinus labiatus, Saimiri sciureus, Presbytis entellus, Cercopithecus albogularis, Cercocebus torquatus, Macaca fascicularis, Hylobates concolor, Pongo pygmaeus, and Gorilla gorilla. In most species, biopterin was the most frequent urinary pteridine followed by neopterin. Sex differences in biopterin and neopterin excretion were observed in Gorilla gorilla and Pongo pygmaeus. Pterin and isoxanthopterin were only present in minor concentrations. 6-hydroxymethyl-pterin was barely detectable and not present in the urine of Saguinus labiatus, Saimiri sciureus, and both male Gorilla gorilla and Pongo pygmaeus.  相似文献   
128.
The recovery of proteins following denaturation is optimal at low protein concentrations. The decrease in yield at high concentrations has been explained by the kinetic competition of folding and "wrong aggregation". In the present study, the renaturation-reoxidation of hen and turkey egg white lysozyme was used as a model system to analyze the committed step in aggregate formation. The yield of renatured protein for both enzymes decreased with increasing concentration in the folding process. In addition, the yield decreased with increasing concentrations of the enzyme in the denatured state (i.e., prior to its dilution in the renaturation buffer). The kinetics of renaturation of turkey lysozyme were shown to be very similar to those of hen lysozyme, with a half-time of about 4.5 min at 20 degrees C. The rate of formation of molecular species that lead to formation of aggregates (and therefore fail to renature) was shown to be rapid. Most of the reaction occurred in less than 5 s after the transfer to renaturation buffer, and after 1 min, the reaction was essentially completed. Yet, by observing the effects of the delayed addition of denatured hen lysozyme to refolding turkey lysozyme, it was shown that folding intermediates become resistant to aggregation only much more slowly, with kinetics indistinguishable from those observed for the appearance of native molecules. The interactions leading to the formation of aggregates were nonspecific and do not involve disulfide bonds. These observations are discussed in terms of possible kinetic and structural aspects of the folding pathway.  相似文献   
129.
Treacher Collins syndrome is an autosomal dominant condition of bilateral craniofacial abnormalities of structures derived from the first and second branchial arches. A patient with severe manifestations of Treacher Collins syndrome and a de novo chromosomal deletion in region 4p15.32----p14 was identified. Anonymous DNA sequences of loci D4S18, D4S19, D4S20, D4S22, and D4S23 were mapped to the deleted region. DNA probes previously mapped to loci on chromosome 4p (D4S10, D4S15, D4S16, D4S26, D4S35, D4S95, D4S144, RAF1P1, QDPR, and HOX7) were not deleted in this patient. Linkage analysis between the D4S18, D4S23, and QDPR loci and Treacher Collins syndrome in eight families excluded the Treacher Collins syndrome locus from the region of the deletion.  相似文献   
130.
Calcium in bacteria: a solution to which problem?   总被引:9,自引:1,他引:8  
Calcium and calcium-binding proteins including those resembling calmodulin are implicated in numerous diverse processes in bacteria. These processes include chemotaxis, sporulation, virulence, the transport of sugars and proteins, phosphorylation, heat shock, the initiation of DNAS replication, septation, nucleoid structure, nuclease activity and recombination, the stability of the envelope, and phospholipids synthesis and configuration. That such varied processes should have a common factor, calcium, suggests major underlying principles of calcium metabolism metabolism which have yet to be discovered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号