首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1200篇
  免费   136篇
  1336篇
  2021年   15篇
  2019年   15篇
  2018年   16篇
  2017年   12篇
  2016年   21篇
  2015年   38篇
  2014年   32篇
  2013年   49篇
  2012年   58篇
  2011年   42篇
  2010年   41篇
  2009年   27篇
  2008年   42篇
  2007年   39篇
  2006年   31篇
  2005年   32篇
  2004年   41篇
  2003年   30篇
  2002年   43篇
  2001年   28篇
  2000年   40篇
  1999年   27篇
  1998年   19篇
  1997年   14篇
  1994年   13篇
  1993年   10篇
  1992年   35篇
  1991年   32篇
  1990年   30篇
  1989年   29篇
  1988年   32篇
  1987年   25篇
  1986年   21篇
  1985年   18篇
  1984年   18篇
  1983年   27篇
  1982年   24篇
  1981年   22篇
  1980年   15篇
  1979年   20篇
  1978年   17篇
  1977年   14篇
  1976年   18篇
  1975年   14篇
  1974年   15篇
  1973年   14篇
  1972年   14篇
  1971年   12篇
  1970年   8篇
  1967年   8篇
排序方式: 共有1336条查询结果,搜索用时 15 毫秒
161.
Inhibition of manganese peroxidase by cadmium was studied under steady-state and transient-state kinetic conditions. CdII is a reversible competitive inhibitor of MnII in the steady state with Ki approximately 10 microM. CdII also inhibits enzyme-generated MnIII-chelate-mediated oxidation of 2,6-dimethoxyphenol with Ki approximately 4 microM. CdII does not inhibit direct oxidation of phenols such as 2,6-dimethoxyphenol or guaiacol (2-methoxyphenol) in the absence of MnII. CdII alters the heme Soret on binding manganese peroxidase and exhibits a Kd approximately 8 microM, similar to Mn (Kd approximately 10 microM). Under transient-state conditions, CdII inhibits reduction of compound I and compound II by MnII at pH 4.5. However, CdII does not inhibit formation of compound I nor does it inhibit reduction of the enzyme intermediates by phenols in the absence of MnII. Kinetic analysis suggests that CdII binds at the MnII-binding site, preventing oxidation of MnII, but does not impair oxidation of substrates, such as phenols, which do not bind at the MnII-binding site. Finally, at pH 4.5 and 55 degrees C, MnII and CdII both protect manganese peroxidase from thermal denaturation more efficiently than CaII, extending the half-life of the enzyme by more than twofold. Furthermore, the combination of half MnII and half CdII nearly quadruples the enzyme half-life over either metal alone or either metal in combination with CaII.  相似文献   
162.
163.
The catalytic cycle intermediates of heme peroxidases, known as compounds I and II, have been of long standing interest as models for intermediates of heme proteins, such as the terminal oxidases and cytochrome P450 enzymes, and for non-heme iron enzymes as well. Reports of resonance Raman signals for compound I intermediates of the oxo-iron(IV) porphyrin pi-cation radical type have been sometimes contradictory due to complications arising from photolability, causing compound I signals to appear similar to those of compound II or other forms. However, studies of synthetic systems indicated that protein based compound I intermediates of the oxoiron(IV) porphyrin pi-cation radical type should exhibit vibrational signatures that are different from the non-radical forms. The compound I intermediates of horseradish peroxidase (HRP), and chloroperoxidase (CPO) from Caldariomyces fumago do in fact exhibit unique and characteristic vibrational spectra. The nature of the putative oxoiron(IV) bond in peroxidase intermediates has been under discussion in the recent literature, with suggestions that the Fe(IV)O unit might be better described as Fe(IV)-OH. The generally low Fe(IV)O stretching frequencies observed for proteins have been difficult to mimic in synthetic ferryl porphyrins via electron donation from trans axial ligands alone. Resonance Raman studies of iron-oxygen vibrations within protein species that are sensitive to pH, deuteration, and solvent oxygen exchange, indicate that hydrogen bonding to the oxoiron(IV) group within the protein environment contributes to substantial lowering of Fe(IV)O frequencies relative to those of synthetic model compounds.  相似文献   
164.
Argentophilic structures of Philophthalmus lucipetus miracidia and cercariae from Israel are described. Eighty-four of 87 miracidia examined displayed an epidermal plate arrangement of 6:8:4:2 = 20, similar to other Philophthalmus species. Twenty papilla-like structures are arranged on the terebratorium in 3 groups, along 1 axis. Sixteen body papillae are located at the bases of epidermal plates of row 1. Eyespots are mediodorsal, between rows 1 and 2. Excretory pores are lateral, between rows 2 and 3. Features common to Israeli and Bulgarian isolates, differentiating them from other species, include the presence of 16 body papillae as opposed to 10 in other species, and a maximum of 20 papillae on the terebratorium as opposed to 19 in the others. About 3% of the miracidia displayed different plate arrangements. Among the argentophilic structures of P. lucipetus cercariae, the Israeli and Bulgarian P. lucipetus show a common pattern of 2-4 excretory pores in the tail, but arrangement of cephalic CI3 and CI5 papillae in the 2 isolates is insufficiently unequivocal for species determination. The data presented show that miracidial characteristics, rather than those of cercariae, aid in determining the species of philophthalmids. They also support former evidence attesting to the identity of the Bulgarian and Israeli species.  相似文献   
165.
Translation of the UGA triplet in vitro by tryptophan transfer RNA's   总被引:32,自引:0,他引:32  
Tryptophan transfer RNA from the UGA-suppressing strain of Escherichia coli CAJ64 was purified and assayed for suppressor activity in vitro in two ways: by translation of the bacteriophage T4 lysozyme messenger RNA bearing a UGA mutation, and by translation of poly(U-G-A). Purified tRNATrp, and no other fraction, stimulates lysozyme synthesis 30-fold above the level seen when comparable amounts of tryptophan tRNA from the non-suppressing strain, CA244, were added; it also translates poly(U-G-A) as polytryptophan more efficiently than the su tRNA. Tryptophan tRNA from the non-suppressing strain is active in the assays but far less so than CAJ64 tRNATrp, and this is consistent with the leakiness of su strains. Since the nucleotide sequences of these tryptophan tRNA's are known (Hirsh, 1971), it is concluded that tRNA with a CCA anticodon recognizes the UGA triplet and this recognition is improved by a nucleotide change elsewhere in the molecule.  相似文献   
166.
Under secondary metabolic conditions, the lignin-degrading basidiomycete Phanerochaete chrysosporium mineralizes 2,4,6-trichlorophenol. The pathway for the degradation of 2,4,6-trichlorophenol has been elucidated by the characterization of fungal metabolites and oxidation products generated by purified lignin peroxidase (LiP) and manganese peroxidase (MnP). The multistep pathway is initiated by a LiP- or MnP-catalyzed oxidative dechlorination reaction to produce 2,6-dichloro-1,4-benzoquinone. The quinone is reduced to 2,6-dichloro-1,4-dihydroxybenzene, which is reductively dechlorinated to yield 2-chloro-1,4-dihydroxybenzene. The latter is degraded further by one of two parallel pathways: it either undergoes further reductive dechlorination to yield 1,4-hydroquinone, which is ortho-hydroxylated to produce 1,2,4-trihydroxybenzene, or is hydroxylated to yield 5-chloro-1,2,4-trihydroxybenzene, which is reductively dechlorinated to produce the common key metabolite 1,2,4-trihydroxybenzene. Presumably, the latter is ring cleaved with subsequent degradation to CO2. In this pathway, the chlorine at C-4 is oxidatively dechlorinated, whereas the other chlorines are removed by a reductive process in which chlorine is replaced by hydrogen. Apparently, all three chlorine atoms are removed prior to ring cleavage. To our knowledge, this is the first reported example of aromatic reductive dechlorination by a eukaryote.  相似文献   
167.
The neurotrophic cytokines ciliary neurotrophic factor and leukemia inhibitory factor (LIF) play a key role in neuronal and oligodendrocyte survival and as protective factors in neuroinflammation. To further elucidate the potential of endogenous LIF in modulating neuroinflammation, we studied myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in LIF knockout mice (LIF(-/-) mice). In the late phase of active myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis, LIF(-/-) mice exhibited a markedly milder disease course. The inflammatory infiltrate in LIF(-/-) mice was characterized by an increase in neutrophilic granulocytes early and fewer infiltrating macrophages associated with less demyelination later in the disease. In good correlation with an effect of endogenous LIF on the immune response, we found an Ag-specific T cell-priming defect with impaired IFN-gamma production in LIF(-/-) mice. On the molecular level, the altered recruitment of inflammatory cells is associated with distinct patterns of chemokine production in LIF(-/-) mice with an increase of CXCL1 early and a decrease of CCL2, CCL3, and CXCL10 later in the disease. These data reveal that endogenous LIF is an immunologically active molecule in neuroinflammation. This establishes a link between LIF and the immune system which was not observed in the ciliary neurotrophic factor knockout mouse.  相似文献   
168.
Circular RNAs (circRNAs) are novel noncoding RNAs and play crucial roles in various biological processes. However, little is known about the functions of circRNAs in osteogenic differentiation. The current study aimed to investigate the differential expression of circRNAs in rat dental follicle cells (rDFCs) during osteogenic differentiation, identified by RNA high-throughput sequencing and quantitative real-time polymerase chain reaction. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to further explore the biofunctions of circRNA biofunctions. Two hundred sixty-six differentially-expressed circRNAs that are involved in several important signaling pathways, including mitogen-activated protein kinases (MAPK) and transforming growth factor-β (TGF-β) signaling pathways were revealed. Among these, circFgfr2 and its predicted downstream targets, miR-133 and BMP6 (bone morphogenetic protein-6), were identified both in vivo and in vitro. For further validation, circFgfr2 was overexpressed in rDFCs, the results showed that the expression of miR-133 was downregulated and the expression of BMP6 was upregulated. Taken together, the results revealed the circRNA expression profiles and indicated the importance of circRNAs of rDFCs. In addition, circFgfr2 might promote osteogenesis by controlling miR-133/BMP6, which is a potential new target for the manipulation of tooth regeneration and bone formation.  相似文献   
169.
The RegA protein of bacteriophage T4 is a translational repressor that regulates expression of several phage early mRNAs. We have cloned wild-type and mutant alleles of the T4 regA gene under control of the heat-inducible, plasmid-borne leftward promoter (PL) of phage lambda. Expression of the cloned regA+ gene resulted in the synthesis of a protein that closely resembled phage-encoded RegA protein in biological properties. It repressed its own synthesis (autogenous translational control) as well as the synthesis of specific T4-encoded proteins that are known from other studies to be under RegA-mediated translational control. Cloned mutant alleles of regA exhibited derepressed synthesis of the mutant regA gene products and were ineffective in trans against RegA-sensitive mRNA targets. The effects of plasmid-encoded RegA proteins were also demonstrated in experiments using two compatible plasmids in uninfected Escherichia coli. The two-plasmid assays confirm the sensitivities of several cloned T4 genes to RegA-mediated translational repression and are well-suited for genetic analysis of RegA target sites. Repression specificity in this system was demonstrated by using wild-type and operator-constitutive translational initiation sites of T4 rIIB fused to lacZ. The results show that no additional T4 products are required for RegA-mediated translational repression. Additional evidence is provided for the proposal that uridine-rich mRNA sequences are preferred targets for the repressor. Surprisingly, plasmid-generated RegA protein represses the synthesis of some E. coli proteins and appears to enhance selectively the synthesis of others. The RegA protein may have multiple functions, and its binding sites are not restricted to phage mRNAs.  相似文献   
170.
Under nitrogen-limiting, secondary metabolic conditions, the white rot basidiomycete Phanerochaete chrysosporium extensively mineralized the specifically 14C-ring-labeled azo dyes 4-phenylazophenol, 4-phenylazo-2-methoxyphenol, Disperse Yellow 3 [2-(4'-acetamidophenylazo)-4-methylphenol], 4-phenylazoaniline, N,N-dimethyl-4-phenylazoaniline, Disperse Orange 3 [4-(4'-nitrophenylazo)-aniline], and Solvent Yellow 14 (1-phenylazo-2-naphthol). Twelve days after addition to cultures, the dyes had been mineralized 23.1 to 48.1%. Aromatic rings with substituents such as hydroxyl, amino, acetamido, or nitro functions were mineralized to a greater extent than unsubstituted rings. Most of the dyes were degraded extensively only under nitrogen-limiting, ligninolytic conditions. However, 4-phenylazo-[U-14C]phenol and 4-phenylazo-[U-14C]2-methoxyphenol were mineralized to a lesser extent under nitrogen-sufficient, nonligninolytic conditions as well. These results suggest that P. chrysosporium has potential applications for the cleanup of textile mill effluents and for the bioremediation of dye-contaminated soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号