首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   2篇
  148篇
  2023年   10篇
  2022年   4篇
  2021年   17篇
  2020年   1篇
  2019年   7篇
  2018年   3篇
  2017年   5篇
  2016年   8篇
  2015年   5篇
  2014年   14篇
  2013年   5篇
  2012年   12篇
  2011年   7篇
  2010年   7篇
  2009年   4篇
  2008年   6篇
  2007年   8篇
  2006年   7篇
  2005年   3篇
  2004年   3篇
  2003年   6篇
  2002年   4篇
  1992年   1篇
  1963年   1篇
排序方式: 共有148条查询结果,搜索用时 0 毫秒
71.
Positively charged counterions drive RNA molecules into compact configurations that lead to their biologically active structures. To understand how the valence and size of the cations influences the collapse transition in RNA, small-angle X-ray scattering was used to follow the decrease in the radius of gyration (Rg) of the Azoarcus and Tetrahymena ribozymes in different cations. Small, multivalent cations induced the collapse of both ribozymes more efficiently than did monovalent ions. Thus, the cooperativity of the collapse transition depends on the counterion charge density. Singular value decomposition of the scattering curves showed that folding of the smaller and more thermostable Azoarcus ribozyme is well described by two components, whereas collapse of the larger Tetrahymena ribozyme involves at least one intermediate. The ion-dependent persistence length, extracted from the distance distribution of the scattering vectors, shows that the Azoarcus ribozyme is less flexible at the midpoint of transition in low-charge-density ions than in high-charge-density ions. We conclude that the formation of sequence-specific tertiary interactions in the Azoarcus ribozyme overlaps with neutralization of the phosphate charge, while tertiary folding of the Tetrahymena ribozyme requires additional counterions. Thus, the stability of the RNA structure determines its sensitivity to the valence and size of the counterions.  相似文献   
72.
Helicobacter pylori is thought to be related to atherosclerosis and aneurysm development. We aimed to detect virulance factors of H. pylori and examine the potential etiopathogenetic relationship between aortic aneurysm and H. pylori, 58 abdominal aortic aneurysm (AAA) and 38 ascending aortic aneurysm (AsAA) cases and 57 Healty control group (HCG) were included. We investigated H. pylori IgG by ELISA and virulance factors by Western-Blot (WB) method. No difference was found between AAA (67.24%), AsAA (73.68%) and HCG (57.89%) for H. pylori IgG (p > 0.05). A significant difference was found between AsAA (78.95%) and HCG (57.89%) for H.pylori IgG (p < 0.05) by ELISA and a significant difference was found only between AsAA (100%) and HCG (37.5%) for H. pylori IgG in the 45-55 age group by WB. A statistically significant difference was found between AAA and AsAA for VacA and CagA + VacA and CagA + VacA + UreA antigens and also a significant difference was found between AsAA and HCG for CagA + UreA antigens (p < 0.05). Finally, we suggest that H. pylori VacA has a more important role than CagA in the development of two aneurysms especially in ruptured AAA. New extended studies detecting H. pylori DNA are needed to detect the aetiopathogenesis between aneurysm types and H. pylori.  相似文献   
73.
Yildiz  Oguzhan  Ulusoy  Kemal Gokhan 《Amino acids》2022,54(12):1527-1540

Taurine is widely distributed at high concentrations in mammalian tissues, and it plays an important role in a wide range of biological effects including modulation of cardiovascular functions. This review summarizes the role of taurine in vascular tone and blood pressure modulation based on experimental and human studies. It is well established that supplementation of taurine prevents development of hypertension in several animal models and p.o. taurine administration reduces blood pressure in hypertensive patients. Both central and peripheral actions of taurine may be involved in its hypotensive effects. In isolated animal arteries, taurine exerts vasodilation through endothelium-dependent and independent mechanisms. Several studies showed that taurine relaxed various animal arteries through opening potassium channels. We have recently shown that taurine relaxes human internal mammary and radial arteries by opening large conductance Ca2+-activated K+ channels. To date, the molecular mechanism(s) involved in the vascular effects of taurine are largely unknown and require further investigation. Clarifying the mechanisms in which taurine affects the vascular system may facilitate the development of therapeutic and/or diet-based strategies to reduce the burden of vascular diseases.

  相似文献   
74.
Pulmonary vasodilation is mediated through the activation of protein kinase G (PKG) via a signaling pathway involving nitric oxide (NO), natriuretic peptides (NP), and cyclic guanosine monophosphate (cGMP). In pulmonary hypertension secondary to congenital heart disease, this pathway is endogenously activated by an early vascular upregulation of NO and increased myocardial B-type NP expression and release. In the treatment of pulmonary hypertension, this pathway is exogenously activated using inhaled NO or other pharmacological agents. Despite this activation of cGMP, vascular dysfunction is present, suggesting that NO-cGMP independent mechanisms are involved and were the focus of this study. Exposure of pulmonary artery endothelial or smooth muscle cells to the NO donor, Spermine NONOate (SpNONOate), increased peroxynitrite (ONOO(-) ) generation and PKG-1α nitration, while PKG-1α activity was decreased. These changes were prevented by superoxide dismutase (SOD) or manganese(III)tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP) and mimicked by the ONOO(-) donor, 3-morpholinosydnonimine N-ethylcarbamide (SIN-1). Peripheral lung extracts from 4-week old lambs with increased pulmonary blood flow and pulmonary hypertension (Shunt lambs with endogenous activation of cGMP) or juvenile lambs treated with inhaled NO for 24 h (with exogenous activation of cGMP) revealed increased ONOO(-) levels, elevated PKG-1α nitration, and decreased kinase activity without changes in PKG-1α protein levels. However, in Shunt lambs treated with L-arginine or lambs administered polyethylene glycol conjugated-SOD (PEG-SOD) during inhaled NO exposure, ONOO(-) and PKG-1α nitration were diminished and kinase activity was preserved. Together our data reveal that vascular dysfunction can occur, despite elevated levels of cGMP, due to PKG-1α nitration and subsequent attenuation of activity.  相似文献   
75.
Lack of water resources and high water salinity levels are among the most important growth-restricting factors for plants species of the world. This research investigates the effect of irrigation levels and salinity on reflectance of Saint John’s wort leaves (Hypericum perforatum L.) under stress conditions (water and salt stress) by multiple linear regression (MLR), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Empirical and heuristics modeling methods were employed in this study to relate stress conditions to leaf reflectance. It was found that the constructed ANN model exhibited a high performance than multiple regression and ANFIS in estimating leaf reflectance accurately.  相似文献   
76.

Background

The etiology of AIS remains unclear, thus various hypotheses concerning its pathomechanism have been proposed. To date, biomechanical modeling has not been used to thoroughly study the influence of the abnormal growth profile (i.e., the growth rate of the vertebral body during the growth period) on the pathomechanism of curve progression in AIS. This study investigated the hypothesis that AIS progression is associated with the abnormal growth profiles of the anterior column of the spine.

Methods

A finite element model of the spinal column including growth dynamics was utilized. The initial geometric models were constructed from the bi-planar radiographs of a normal subject. Based on this model, five other geometric models were generated to emulate different coronal and sagittal curves. The detailed modeling integrated vertebral body growth plates and growth modulation spinal biomechanics. Ten years of spinal growth was simulated using AIS and normal growth profiles. Sequential measures of spinal alignments were compared.

Results

(1) Given the initial lateral deformity, the AIS growth profile induced a significant Cobb angle increase, which was roughly between three to five times larger compared to measures utilizing a normal growth profile. (2) Lateral deformities were absent in the models containing no initial coronal curvature. (3) The presence of a smaller kyphosis did not produce an increase lateral deformity on its own. (4) Significant reduction of the kyphosis was found in simulation results of AIS but not when using the growth profile of normal subjects.

Conclusion

Results from this analysis suggest that accelerated growth profiles may encourage supplementary scoliotic progression and, thus, may pose as a progressive risk factor.  相似文献   
77.
78.
The development of pulmonary hypertension is a common accompaniment of congenital heart disease (CHD) with increased pulmonary blood flow. Our recent evidence suggests that asymmetric dimethylarginine (ADMA)-induced mitochondrial dysfunction causes endothelial nitric oxide synthase (eNOS) uncoupling secondary to a proteasome-dependent degradation of GTP cyclohydrolase I (GCH1) that results in a decrease in the NOS cofactor tetrahydrobiopterin (BH(4)). Decreases in NO signaling are thought to be an early hallmark of endothelial dysfunction. As l-carnitine plays an important role in maintaining mitochondrial function, in this study we examined the protective mechanisms and the therapeutic potential of l-carnitine on NO signaling in pulmonary arterial endothelial cells and in a lamb model of CHD and increased pulmonary blood flow (Shunt). Acetyl-l-carnitine attenuated the ADMA-mediated proteasomal degradation of GCH1. This preservation was associated with a decrease in the association of GCH1 with Hsp70 and the C-terminus of Hsp70-interacting protein (CHIP) and a decrease in its ubiquitination. This in turn prevented the decrease in BH(4) levels induced by ADMA and preserved NO signaling. Treatment of Shunt lambs with l-carnitine also reduced GCH1/CHIP interactions, attenuated the ubiquitination and degradation of GCH1, and increased BH(4) levels compared to vehicle-treated Shunt lambs. The increases in BH(4) were associated with decreased NOS uncoupling and enhanced NO generation. Thus, we conclude that L-carnitine may have a therapeutic potential in the treatment of pulmonary hypertension in children with CHD with increased pulmonary blood flow.  相似文献   
79.
Diffusion is often an important rate-determining step in chemical reactions or biological processes and plays a role in a wide range of intracellular events. Viscosity is one of the key parameters affecting the diffusion of molecules and proteins, and changes in viscosity have been linked to disease and malfunction at the cellular level.1-3 While methods to measure the bulk viscosity are well developed, imaging microviscosity remains a challenge. Viscosity maps of microscopic objects, such as single cells, have until recently been hard to obtain. Mapping viscosity with fluorescence techniques is advantageous because, similar to other optical techniques, it is minimally invasive, non-destructive and can be applied to living cells and tissues.Fluorescent molecular rotors exhibit fluorescence lifetimes and quantum yields which are a function of the viscosity of their microenvironment.4,5 Intramolecular twisting or rotation leads to non-radiative decay from the excited state back to the ground state. A viscous environment slows this rotation or twisting, restricting access to this non-radiative decay pathway. This leads to an increase in the fluorescence quantum yield and the fluorescence lifetime. Fluorescence Lifetime Imaging (FLIM) of modified hydrophobic BODIPY dyes that act as fluorescent molecular rotors show that the fluorescence lifetime of these probes is a function of the microviscosity of their environment.6-8 A logarithmic plot of the fluorescence lifetime versus the solvent viscosity yields a straight line that obeys the Förster Hoffman equation.9 This plot also serves as a calibration graph to convert fluorescence lifetime into viscosity.Following incubation of living cells with the modified BODIPY fluorescent molecular rotor, a punctate dye distribution is observed in the fluorescence images. The viscosity value obtained in the puncta in live cells is around 100 times higher than that of water and of cellular cytoplasm.6,7 Time-resolved fluorescence anisotropy measurements yield rotational correlation times in agreement with these large microviscosity values. Mapping the fluorescence lifetime is independent of the fluorescence intensity, and thus allows the separation of probe concentration and viscosity effects. In summary, we have developed a practical and versatile approach to map the microviscosity in cells based on FLIM of fluorescent molecular rotors.  相似文献   
80.
Genetic variations in monoamine oxidase (MAO)-B activity have been proposed to have a contributory role in several neurologic and psychiatric diseases. Variations in activity could affect rates of degradation of exogenous amines, including toxins, precursors of toxins (like 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), or false transmitters, and of endogenous amines, such as neurotransmitters. In this study a highly polymorphic (GT)n repeat element was used to mark alleles at the MAOB locus. The MAOB allele status and levels of platelet MAO-B activity were determined for 41 control males. No correlation was noted between specific alleles and levels of MAO-B activity in this sample set. This suggests that the structural gene for MAOB is not usually the primary determinant of activity levels in platelets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号