首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   9篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   9篇
  2014年   4篇
  2013年   13篇
  2012年   13篇
  2011年   15篇
  2010年   3篇
  2009年   7篇
  2008年   17篇
  2007年   14篇
  2006年   7篇
  2005年   11篇
  2004年   7篇
  2003年   9篇
  2002年   6篇
  2001年   1篇
  2000年   7篇
  1998年   4篇
  1997年   3篇
  1995年   2篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
41.
42.
Localized activation of Rho GTPases is essential for multiple cellular functions, including cytokinesis and formation and maintenance of cell–cell junctions. Although MgcRacGAP (Mgc) is required for spatially confined RhoA-GTP at the equatorial cortex of dividing cells, both the target specificity of Mgc''s GAP activity and the involvement of phosphorylation of Mgc at Ser-386 are controversial. In addition, Mgc''s function at cell–cell junctions remains unclear. Here, using gastrula-stage Xenopus laevis embryos as a model system, we examine Mgc''s role in regulating localized RhoA-GTP and Rac1-GTP in the intact vertebrate epithelium. We show that Mgc''s GAP activity spatially restricts accumulation of both RhoA-GTP and Rac1-GTP in epithelial cells—RhoA at the cleavage furrow and RhoA and Rac1 at cell–cell junctions. Phosphorylation at Ser-386 does not switch the specificity of Mgc''s GAP activity and is not required for successful cytokinesis. Furthermore, Mgc regulates adherens junction but not tight junction structure, and the ability to regulate adherens junctions is dependent on GAP activity and signaling via the RhoA pathway. Together these results indicate that Mgc''s GAP activity down-regulates the active populations of RhoA and Rac1 at localized regions of epithelial cells and is necessary for successful cytokinesis and cell–cell junction structure.  相似文献   
43.
AimsMenadione, a redox-cycling quinone known to cause oxidative stress, binds to reduced glutathione (GSH) to form glutathione S-conjugate. Glutathione S-conjugates efflux is often mediated by multidrug-resistance-associated protein (MRP). We investigated the effect of a transporter inhibitor, MK571 (3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid), on menadione-induced oxidative stress in bovine aortic endothelial cells (BAECs).Main methodsBAECs were treated with menadione and MK571, and cell viability was measured. Modulation of intracellular GSH levels was performed with buthionine sulfoximine and GSH ethyl ester treatments. Intracellular superoxide was estimated by dihydroethidium oxidation using fluorescence microscopy or flow cytometry. Expression of MRP was determined by flow cytometry using phycoerythrin-conjugated anti-MRP monoclonal antibody.Key findingsIntracellular GSH depletion by buthionine sulfoximine promoted the loss of viability of BAECs exposed to menadione. Exogenous GSH, which does not permeate the cell membrane, or GSH ethyl ester protected BAECs against the loss of viability induced by menadione. The results suggest that GSH binds to menadione outside the cells as well as inside. Pretreatment of BAECs with MK571 dramatically increased intracellular levels of superoxide generated from menadione, indicating that menadione may accumulate in the intracellular milieu. Finally, we found that MK571 aggravated menadione-induced toxicity in BAECs and that MRP levels were increased in menadione-treated cells.SignificanceWe conclude that MRP plays a vital role in protecting BAECs against menadione-induced oxidative stress, presumably due to its ability to transport glutathione S-conjugate.  相似文献   
44.
We employed a comparative genomic approach to understand protein phosphatase 2C (PP2C)-mediated abscisic acid (ABA) signaling in the moss Physcomitrella patens. Ectopic expression of Arabidopsis (Arabidopsis thaliana) abi1-1, a dominant mutant allele of ABI1 encoding a PP2C involved in the negative regulation of ABA signaling, caused ABA insensitivity of P. patens both in gene expression of late embryogenesis abundant (LEA) genes and in ABA-induced protonemal growth inhibition. The transgenic abi1-1 plants showed decreased ABA-induced freezing tolerance, and decreased tolerance to osmotic stress. Analyses of the P. patens genome revealed that only two (PpABI1A and PpABI1B) PP2C genes were related to ABI1. In the ppabi1a null mutants, ABA-induced expression of LEA genes was elevated, and protonemal growth was inhibited with lower ABA concentration compared to the wild type. Moreover, ABA-induced freezing tolerance of the ppabi1a mutants was markedly enhanced. We provide the genetic evidence that PP2C-mediated ABA signaling is evolutionarily conserved between Arabidopsis and P. patens. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Accession Numbers: PpABI1A-AB369256, PpABI1B-AB369255, pphn39k21-AB369257.  相似文献   
45.

Background

In response to viral infection, the innate immune system recognizes viral nucleic acids and then induces production of proinflammatory cytokines and type I interferons (IFNs). Toll-like receptor 7 (TLR7) and TLR9 detect viral RNA and DNA, respectively, in endosomal compartments, leading to the activation of nuclear factor κB (NF-κB) and IFN regulatory factors (IRFs) in plasmacytoid dendritic cells. During such TLR signaling, TNF receptor-associated factor 6 (TRAF6) is essential for the activation of NF-κB and the production of type I IFN. In contrast, RIG-like helicases (RLHs), cytosolic RNA sensors, are indispensable for antiviral responses in conventional dendritic cells, macrophages, and fibroblasts. However, the contribution of TRAF6 to the detection of cytosolic viral nucleic acids has been controversial, and the involvement of TRAF6 in IRF activation has not been adequately addressed.

Principal Findings

Here we first show that TRAF6 plays a critical role in RLH signaling. The absence of TRAF6 resulted in enhanced viral replication and a significant reduction in the production of IL-6 and type I IFNs after infection with RNA virus. Activation of NF-κB and IRF7, but not that of IRF3, was significantly impaired during RLH signaling in the absence of TRAF6. TGFβ-activated kinase 1 (TAK1) and MEKK3, whose activation by TRAF6 during TLR signaling is involved in NF-κB activation, were not essential for RLH-mediated NF-κB activation. We also demonstrate that TRAF6-deficiency impaired cytosolic DNA-induced antiviral responses, and this impairment was due to defective activation of NF-κB and IRF7.

Conclusions/Significance

Thus, TRAF6 mediates antiviral responses triggered by cytosolic viral DNA and RNA in a way that differs from that associated with TLR signaling. Given its essential role in signaling by various receptors involved in the acquired immune system, TRAF6 represents a key molecule in innate and antigen-specific immune responses against viral infection.  相似文献   
46.
Platelets store self-agonists such as ADP and serotonin in dense core granules. Although exocytosis of these granules is crucial for hemostasis and thrombosis, the underlying mechanism is not fully understood. Here, we show that incubation of permeabilized platelets with unprenylated active mutant Rab27A-Q78L, wild type Rab27A, and Rab27B inhibited the secretion, whereas inactive mutant Rab27A-T23N and other GTPases had no effects. Furthermore, we affinity-purified a GTP-Rab27A-binding protein in platelets and identified it as Munc13-4, a homologue of Munc13-1 known as a priming factor for neurotransmitter release. Recombinant Munc13-4 directly bound to GTP-Rab27A and -Rab27B in vitro, but not other GTPases, and enhanced secretion in an in vitro assay. The inhibition of secretion by unprenylated Rab27A was rescued by the addition of Munc13-4, suggesting that Munc13-4 mediates the function of GTP-Rab27. Thus, Rab27 regulates the dense core granule secretion in platelets by employing its binding protein, Munc13-4.  相似文献   
47.
Tumor necrosis factor receptor-associated factor 6 (TRAF6) transduces signals from members of the Toll/interleukin-1 (IL-1) receptor family by interacting with IL-1 receptor-associated kinase-1 (IRAK-1) after IRAK-1 is released from the receptor-MyD88 complex upon IL-1 stimulation. However, the molecular mechanisms underlying regulation of the IRAK-1/TRAF6 interaction are largely unknown. We have identified TIFA, a TRAF-interacting protein with a forkhead-associated (FHA) domain. The FHA domain is a motif known to bind directly to phosphothreonine and phosphoserine. In transient transfection assays, TIFA activates NFkappaBeta and c-Jun amino-terminal kinase. However, TIFA carrying a mutation that abolishes TRAF6 binding or mutations in the FHA domain that are known to abolish FHA domain binding to phosphopeptide fails to activate NFkappaBeta and c-Jun amino-terminal kinase. TIFA, when overexpressed, binds both TRAF6 and IRAK-1 and significantly enhances the IRAK-1/TRAF6 interaction. Furthermore, analysis of endogenous proteins indicates that TIFA associates with TRAF6 constitutively, whereas it associates with IRAK-1 in an IL-1 stimulation-dependent manner in vivo. Thus, TIFA is likely to mediate IRAK-1/TRAF6 interaction upon IL-1 stimulation.  相似文献   
48.
The pressure-induced denaturation of rabbit skeletal myosin and its subfragments under hydrostatic pressure were investigated. Four nanometer of red shift of the intrinsic fluorescence spectrum was observed in myosin under a pressure of 400 MPa. The ANS fluorescence of myosin increased with elevating pressure. Changes in the intrinsic fluorescence spectra of myosin and its subfragments were quantified and expressed as the center of spectral mass. The center of spectral mass of myosin and its subfragments linearly decreased with elevating pressure, and increased with lowering pressure. The fluorescence intensity of the ANS-labeled rod did not change during pressure treatment. The present results indicate that the most pressure-sensitive portion of myosin molecule is the head. Hysteresis of the center of spectral mass of S1 appeared under pressures above 300 MPa. Changes in the center of spectral mass of S1 above 350 MPa showed stronger hysteresis. The center of spectral mass did not decrease above 350 MPa during the compression process, indicating that S1 was stable in a partially denatured state at 350 MPa under pressure. The changes in the relative intensities of ANS fluorescence of S1 were measured under pressures up to 400 MPa, and the ANS fluorescence intensity increased with elevating pressure but it did not change after pressure release. The ANS fluorescence intensity increased under constant pressure suggesting that the pressure-induced denaturation of myosin was accelerated during pressurization.  相似文献   
49.
Plant genomic resources harbouring gain-of-function mutations remain rare, even though this type of mutation is believed to be one of the most useful for elucidating the function of unknown genes that have redundant partners in the genome. An activation-tagging T-DNA was introduced into the genome of Arabidopsis creating 55,431 independent transformed lines. Of these T1 lines, 1,262 showed phenotypes different from those of wild-type plants. We called these lines 'AT1Ps' (activation T1 putants). The phenotypes observed include abnormalities in morphology, growth rate, plant colour, flowering time and fertility. Similar phenotypes re-appeared either in dominant or semi-dominant fashion in 17% of 177 AT2P plants tested. Plasmid rescue or an adaptor-PCR method was used to identify 1172 independent genomic loci of T-DNA integration sites in the AT1P plants. Mapping of the integration sites revealed that the chromosomal distribution of these sites is similar to that observed in conventional T-DNA knock-out lines, except that the intragenic type of integration is slightly lower (27%) in the AT1P plants compared to that observed in other random knock-out populations (30-35%). Ten AT2P lines that showed dominant phenotypes were chosen to monitor expression levels of genes adjacent to the T-DNA integration sites by RT-PCR. Activation was observed in 7 out of 17 of the adjacent genes detected. Genes located up to 8.2 kb away from the enhancer sequence were activated. One of the seven activated genes was located close to the left-border sequence of the T-DNA, having an estimated distance of 5.7 kb from the enhancer. Surprisingly, one gene, the first ATG of which is located 12 kb away from the enhancer, showed reduced mRNA accumulation in the tagged line. Application of the database generated to Arabidopsis functional genomics research is discussed. The sequence database of the 1172 loci from the AT1P plants is available (http://pfgweb.gsc.riken.go.jp/index.html).  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号