首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   882篇
  免费   75篇
  2023年   3篇
  2022年   12篇
  2021年   21篇
  2020年   4篇
  2019年   21篇
  2018年   22篇
  2017年   19篇
  2016年   21篇
  2015年   43篇
  2014年   45篇
  2013年   50篇
  2012年   72篇
  2011年   57篇
  2010年   50篇
  2009年   37篇
  2008年   50篇
  2007年   44篇
  2006年   32篇
  2005年   36篇
  2004年   42篇
  2003年   28篇
  2002年   27篇
  2001年   21篇
  2000年   25篇
  1999年   18篇
  1998年   23篇
  1997年   15篇
  1996年   16篇
  1995年   9篇
  1994年   7篇
  1993年   4篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   7篇
  1976年   6篇
  1975年   3篇
  1970年   2篇
  1968年   3篇
排序方式: 共有957条查询结果,搜索用时 31 毫秒
151.
152.
Responses of plant cells to environmental stresses often involve morphological changes, differentiation and redistribution of various organelles and cytoskeletal network. Tobacco BY-2 cells provide excellent model system for in vivo imaging of these intracellular events. Treatment of the cell cycle-synchronized BY-2 cells with a proteinaceous oomycete elicitor, cryptogein, induces highly synchronous programmed cell death (PCD) and provide a model system to characterize vacuolar and cytoskeletal dynamics during the PCD. Sequential observation revealed dynamic reorganization of the vacuole and actin microfilaments during the execution of the PCD. We further characterized the effects cryptogein on mitotic microtubule organization in cell cycle-synchronized cells. Cryptogein treatment at S phase inhibited formation of the preprophase band, a cortical microtubule band that predicts the cell division site. Cortical microtubules kept their random orientation till their disruption that gradually occurred during the execution of the PCD twelve hours after the cryptogein treatment. Possible molecular mechanisms and physiological roles of the dynamic behavior of the organelles and cytoskeletal network in the pathogenic signal-induced PCD are discussed.Key words: actin microfilament, cell cycle, cryptogein, microtubules, nuclei, programmed cell death, tobacco BY-2 cells, vacuoles  相似文献   
153.
154.
Low reaction yields and the high cost of obtaining a single type of pure CD make γ-CD costly. Using rational design and with the aid of 3D modeling structures, recombinant CGTase from Bacillus sp. G1 was molecularly engineered with the aim of producing a higher percentage of γ-CD. A single mutation at subsite −3, denoted H43T, was found to increase γ-CD production from 10% to approximately 39% using tapioca starch. This novel increment was probably the result of reduced steric hindrance to the formation of γ-CD because of the shortened side chain together with the shortened loop at positions 86–89, at substrate-binding subsite −3. A mutation (Tyr188 → Trp) and a deletion at loop 139–144 showed little effect on product specificity; however, mutagenesis at these sites affected cyclization, coupling and hydrolysis activities as well as the kinetic properties of the mutant CGTase. Based on rational design, three further mutations of the mutant H43T (denoted H43T/Δ(139–144)/S134T/A137V/L138D/V139I, H43T/S85G and H43T/Y87F) were constructed and produced γ-CD with yields of 20%, 20% and 39%, respectively. The mutant H43T/Δ(139–144)/S134T/A137V/L138D/V139I had very low cyclization and coupling activities, however their hydrolysis activity was retained. Double mutation (H43T/S85G) caused the enzyme to exhibit higher starch hydrolysis activity, approximately 26 times higher than the native CGTase G1. Although the mutants H43T and H43T/Y87F could produce the same percentage (39%) of γ-CD, the latter was more efficient as the total amount of CD produced was higher based on the Vmax and kcat values.  相似文献   
155.
156.
The marine phytoplankton, Karenia mikimotoi, causes severe red tides which are associated with mass mortality of marine fish, and have expanded their distributions in the coastal waters of western Japan. To assess the dispersal mechanism, a population genetic study using highly polymorphic genetic markers is one of the crucial approaches. Here we developed 12 polymorphic microsatellite markers from K. mikimotoi. These loci provide a class of highly variable genetic markers, as the number of alleles ranged from 5 to 23, and the estimate of gene diversity was from 0.551 to 0.933 across the 12 microsatellites. We consider these loci potentially useful for detailing the genetic structure and gene flow among K. mikimotoi populations.  相似文献   
157.
Alternative splicing is a main component of protein diversity, and aberrant splicing is known to be one of the main causes of genetic disorders such as cancer. Many statistical and computational approaches have identified several major factors that determine the splicing event, such as exon/intron length, splice site strength, and density of splicing enhancers or silencers. These factors may be correlated with one another and thus result in a specific type of splicing, but there has not been a systematic approach to extracting comprehensible association patterns. Here, we attempted to understand the decision making process of the learning machine on intron retention event. We adopted a hybrid learning machine approach using a random forest and association rule mining algorithm to determine the governing factors of intron retention events and their combined effect on decision-making processes. By quantifying all candidate features into five category values, we enhanced the understandability of generated rules. The interesting features found by the random forest algorithm are that only the adenine- and thymine-based triplets such as ATA, TTA, and ATT, but not the known intronic splicing enhancer GGG triplet is shown the significant features. The rules generated by the association rule mining algorithm also show that constitutive introns are generally characterized by high adenine- and thymine-based triplet frequency (level 3 and above), 3' and 5' splice site scores, exonic splicing silencer scores, and intron length, whereas retained introns are characterized by low-level counterpart scores.  相似文献   
158.

Background

Rnd3 (RhoE) protein belongs to the unique branch of Rho family GTPases that has low intrinsic GTPase activity and consequently remains constitutively active [1], [2]. The current consensus is that Rnd1 and Rnd3 function as important antagonists of RhoA signaling primarily by activating the ubiquitous p190 RhoGAP [3], but not by inhibiting the ROCK family kinases.

Methodology/Principal Findings

Rnd3 is abundant in mouse embryonic stem (mES) cells and in an unbiased two-step affinity purification screen we identified a new Rnd3 target, termed synectin-binding RhoA exchange factor (Syx), by mass spectrometry. The Syx interaction with Rnd3 does not occur through the Syx DH domain but utilizes a region similar to the classic Raf1 Ras-binding domain (RBD), and most closely related to those in RGS12 and RGS14. We show that Syx behaves as a genuine effector of Rnd3 (and perhaps Rnd1), with binding characteristics similar to p190-RhoGAP. Morpholino-oligonucleotide knockdown of Syx in zebrafish at the one cell stage resulted in embryos with shortened anterior-posterior body axis: this phenotype was effectively rescued by introducing mouse Syx1b mRNA. A Rnd3-binding defective mutant of Syx1b mutated in the RBD (E164A/R165D) was more potent in rescuing the embryonic defects than wild-type Syx1b, showing that Rnd3 negatively regulates Syx activity in vivo.

Conclusions/Significance

This study uncovers a well defined Rnd3 effector Syx which is widely expressed and directly impacts RhoA activation. Experiments conducted in vivo indicate that Rnd3 negatively regulates Syx, and that as a RhoA-GEF it plays a key role in early embryonic cell shape changes. Thus a connection to signaling via the planar cell polarity pathway is suggested.  相似文献   
159.
The macrophage scavenger receptor SR-AI binds to host tissue debris to perform clearance and it binds to bacteria for phagocytosis. In addition, SR-AI modulates macrophage activation through cell signaling. However, investigation of SR-AI signaling on macrophages is complicated due to its promiscuous ligand specificity that overlaps with other macrophage receptors. Therefore, we expressed SR-AI on HEK 293T cells to investigate its ligand binding and signaling. On 293T cells, SR-AI could respond to E. coli DH5α, leading to NF-κB activation and IL-8 production. However, this requires E. coli DH5α to be sensitized by fresh serum that is treated with heat-inactivation or complement C3 depletion. Anti-C3 antibody inhibits the binding of SR-AI to serum-sensitized DH5α and blocks DH5α stimulation of SR-AI signaling. Further analysis showed that SR-AI can directly bind to purified iC3b but not C3 or C3b. By mutagenesis, The SRCR domain of SR-AI was found to be essential in SR-AI binding to serum-sensitized DH5α. These results revealed a novel property of SR-AI as a complement receptor for iC3b-opsonized bacteria that can elicit cell signaling.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号