首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   861篇
  免费   78篇
  939篇
  2023年   4篇
  2022年   12篇
  2021年   20篇
  2020年   4篇
  2019年   17篇
  2018年   20篇
  2017年   18篇
  2016年   22篇
  2015年   43篇
  2014年   42篇
  2013年   50篇
  2012年   71篇
  2011年   56篇
  2010年   50篇
  2009年   37篇
  2008年   50篇
  2007年   43篇
  2006年   32篇
  2005年   35篇
  2004年   41篇
  2003年   27篇
  2002年   27篇
  2001年   21篇
  2000年   25篇
  1999年   18篇
  1998年   22篇
  1997年   15篇
  1996年   16篇
  1995年   8篇
  1994年   5篇
  1993年   4篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   5篇
  1978年   3篇
  1977年   7篇
  1976年   6篇
  1975年   3篇
  1970年   2篇
  1968年   3篇
排序方式: 共有939条查询结果,搜索用时 15 毫秒
41.
Only few orthologs of animal apoptosis regulators have been found in plants. Recently, the ectopic expression of mammalian inhibitor of apoptosis proteins (IAPs) has been shown to affect plant programmed cell death. Here, we identified two novel proteins homologous to Arabidopsis thaliana IAP-like protein (AtILP) 1 and 2 by applying an improved motif searching method. Furthermore, homologs of AtILP1 were found to occur as a novel gene family in other organisms such as fungi and animals including Homo sapiens (HsILP1). Like baculovirus IAP repeats (BIRs) in IAPs, ILPs contain two highly conserved BIR-like domains (BLDs) with a putative C2HC-type zinc finger. Phylogenetic analyses indicated that ILPs are putative paralogs of IAPs. Homology modeling revealed that the three-dimensional structure of BLD in HsILP1 is similar to that of BIR. Transient expression of HsILP1 resulted in inhibition of etoposide-induced apoptosis in HEK293 and HeLaS3 cells. These findings suggest that ILPs are conserved in a wide range of eukaryotes including plants, and that their functions are closely related to those of IAPs.  相似文献   
42.
Rice blast, caused by the pathogen Magnaporthe oryzae, is a serious hindrance to rice production and has emerged as an important model for the characterization of molecular mechanisms relevant to pathogenic development in plants. Similar to other pathogenic fungi, conidiation plays a central role in initiation of M.oryzae infection and spread over a large area. However, relatively little is known regarding the molecular mechanisms that underlie conidiation in M. oryzae. To better characterize these mechanisms, we identified a conidiation-defective mutant, ATMT0225B6 (MoCDC15(T-DNA)), in which a T-DNA insertion disrupted a gene that encodes a homolog of fission yeast cdc15, and generated a second strain containing a disruption in the same allele (ΔMoCDC15(T-DNA)). The cdc15 gene has been shown to act as a coordinator of the cell cycle in yeast. Functional analysis of the MoCDC15(T-DNA) and ΔMoCDC15(T-DNA) mutants revealed that MoCDC15 is required for conidiation, preinfection development and pathogenicity in M. oryzae. Conidia from these mutants were viable, but failed to adhere to hydrophobic surface, a crucial step required for subsequent pathogenic development. All phenotypic defects observed in mutants were rescued in a strain complemented with wild type MoCDC15. Together, these data indicate that MoCDC15 functions as a coordinator of several biological processes important for pathogenic development in M. oryzae.  相似文献   
43.
Responses of plant cells to environmental stresses often involve morphological changes, differentiation and redistribution of various organelles and cytoskeletal network. Tobacco BY-2 cells provide excellent model system for in vivo imaging of these intracellular events. Treatment of the cell cycle-synchronized BY-2 cells with a proteinaceous oomycete elicitor, cryptogein, induces highly synchronous programmed cell death (PCD) and provide a model system to characterize vacuolar and cytoskeletal dynamics during the PCD. Sequential observation revealed dynamic reorganization of the vacuole and actin microfilaments during the execution of the PCD. We further characterized the effects cryptogein on mitotic microtubule organization in cell cycle-synchronized cells. Cryptogein treatment at S phase inhibited formation of the preprophase band, a cortical microtubule band that predicts the cell division site. Cortical microtubules kept their random orientation till their disruption that gradually occurred during the execution of the PCD twelve hours after the cryptogein treatment. Possible molecular mechanisms and physiological roles of the dynamic behavior of the organelles and cytoskeletal network in the pathogenic signal-induced PCD are discussed.Key words: actin microfilament, cell cycle, cryptogein, microtubules, nuclei, programmed cell death, tobacco BY-2 cells, vacuoles  相似文献   
44.
45.
Many plant mutants develop spontaneous lesions that resemble disease symptoms in the absence of pathogen attack. In several pathosystems, lesion mimic mutations have been shown to be involved in programmed cell death, which in some instances leads to enhanced disease resistance to multiple pathogens. We investigated the relationship between spontaneous cell death and disease resistance in rice with nine mutants with a range of lesion mimic phenotypes. All nine mutations are controlled by recessive genes and some of these mutants have stunted growth and other abnormal characteristics. The lesion mimics that appeared on the leaves of these mutants were caused by cell death as measured by trypan blue staining. Activation of six defense-related genes was observed in most of the mutants when the mimic lesions developed. Four mutants exhibited significant enhanced resistance to rice blast. One of the mutants, spl11, confers non-race-specific resistance not only to blast but also to bacterial blight. The level of resistance in the spl11 mutant to the two pathogens correlates with the defense-related gene expression and lesion development on the leaves. The results suggest that some lesion mimic mutations in rice may be involved in disease resistance, and cloning of these genes may provide a clue to developing broad-spectrum resistance to diverse pathogens.  相似文献   
46.
Fusarium graminearum Schwabe is the primary cause of Fusarium head blight (FHB) in North America. Chemically distinct F. graminearum sub-populations can be identified based on the type or composition of deoxynivalenol (DON) mycotoxin derivatives, including 3-acetyl (3-ADON) and 15-acetyl (15-ADON). The evaluation of randomly selected 3-ADON and 15-ADON isolates, collected from spring wheat throughout Canada, was performed using thin layer chromatography (TLC), high-performance liquid chromatography (HPLC), ice-nucleation activity (INA), and heat and cold tolerance tests conducted within a temperature range of −70°C to 65°C. The results indicated that the 3-ADON sub-population, which is responsible for the highest disease severity and has rapidly displaced the 15-ADON sub-population, produces more DON and zearalenone (ZEA) than the 15-ADON sub-population when exposed to heat and cold. Following exposures (1 and 2 h) to extremely high or low temperatures, 3-ADON isolates exhibited faster mycelial growth than 15-ADON isolates. In addition, the warmest temperature at which INA activity occurred was in 3-ADON (−3.6°C) vs. 15-ADON (−5.1°C). Taken together, these features suggest that the newly emerging 3-ADON sub-population is more resilient than the resident 15-ADON sub-population. Overall, the differences between the two sub-populations could provide new insights into FHB epidemiology and if validated under field conditions, may provide important information for predicting future FHB epidemics.  相似文献   
47.

Background

In addition to Helicobacter pylori infection, host genetic factors contribute to gastric cancer (GC). Recognition of H. pylori is known to involve Toll-like receptors (TLR), which subsequently leads to activation of NF-κB. Thus, the overall aim of this study was to estimate for the first time the pooled effect size of polymorphisms in TLR2, TLR4 and CD14 on GC development through a meta-analysis.

Methods

A case-control study comprising 284 ethnic Chinese individuals (70 non-cardia GC cases and 214 functional dyspepsia controls) was conducted for the genotyping of TLR2 -196 to -174del, CD14 -260 C/T and TLR4 rs11536889 using PCR, RT-PCR and mass spectrometry. Case-control studies of TLR2, TLR4 and CD14 polymorphisms and GC were searched up to June 2012. Pooled odds ratios and 95% confidence intervals were obtained by means of the random effects model.

Results

In our ethnic Chinese case-control study, the TLR4 rs11536889 C allele increased the risk of GC (OR: 1.89, 95%CI: 1.23–2.92) while the CD14 -260 T allele was protective (OR: 0.62, 95%CI: 0.42–0.91). TLR2 -196 to -174 increased the risk of GC only in H. pylori-infected individuals (OR: 3.10, 95%CI: 1.27–7.60). In the meta-analysis, TLR4 Asp299Gly showed borderline results in the general analysis (pooled OR: 1.58, 95%CI: 0.98–2.60), nevertheless, stratified analysis by ethnicity showed that the mutant allele was a definitive risk factor for GC in Western populations (pooled OR: 1.87, 95%CI: 1.31–2.65). There was a potential association between the TLR2 -196 to -174 deletion allele and GC in Japanese (pooled OR: 1.18, 95%CI: 0.96–1.45). TLR4 Thr399Ile did not provide significant results.

Conclusions

TLR4 rs11536889 and CD14 -260 C/T are associated with non-cardia GC in Chinese. Based on our meta-analysis, the TLR signalling pathway is involved in gastric carcinogenesis, TLR4 Asp299Gly and TLR2 -196 to -174del showing associations with GC in an ethnic-specific manner.  相似文献   
48.
49.
Yu H  Yang SH  Goh CJ 《The Plant cell》2000,12(11):2143-2160
We report here the isolation and identification of an orchid homeobox gene, DOH1, from Dendrobium Madame Thong-In. Analyses of its sequence and genomic organization suggest that DOH1 may be the only class 1 knox gene in the genome. DOH1 mRNA accumulates in meristem-rich tissues, and its expression is greatly downregulated during floral transition. In situ hybridization analysis demonstrates that DOH1 is also expressed in the incipient leaf primordia and is later detected in the same region of the inflorescence apex, as in DOMADS1. Overexpression of DOH1 in orchid plants completely suppresses shoot organization and development. Transgenic orchid plants expressing antisense mRNA for DOH1 show multiple shoot apical meristem (SAM) formations and early flowering. In addition, both the sense and antisense transformants exhibit defects in leaf development. These findings suggest that DOH1 plays a key role in maintaining the basic plant architecture of orchid through control of the formation and development of the SAM and shoot structure. Investigations of DOMADS1 expression in the SAM during floral transition reveal that the precocious flowering phenotype exhibited by DOH1 antisense transformants is coupled with the early onset of DOMADS1 expression. This fact, together with the reciprocal expression of DOH1 and DOMADS1 during floral transition, indicates that downregulation of DOH1 in the SAM is required for floral transition in orchid and that DOH1 is a possible upstream regulator of DOMADS1.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号