首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   896篇
  免费   79篇
  2023年   3篇
  2022年   12篇
  2021年   20篇
  2020年   4篇
  2019年   18篇
  2018年   20篇
  2017年   20篇
  2016年   22篇
  2015年   42篇
  2014年   44篇
  2013年   51篇
  2012年   73篇
  2011年   60篇
  2010年   53篇
  2009年   38篇
  2008年   55篇
  2007年   45篇
  2006年   33篇
  2005年   36篇
  2004年   41篇
  2003年   29篇
  2002年   28篇
  2001年   22篇
  2000年   26篇
  1999年   20篇
  1998年   23篇
  1997年   16篇
  1996年   17篇
  1995年   9篇
  1994年   5篇
  1993年   4篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   6篇
  1987年   6篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   8篇
  1976年   6篇
  1975年   3篇
  1970年   2篇
  1968年   3篇
排序方式: 共有975条查询结果,搜索用时 31 毫秒
101.
The glucose-6-phosphatase (G6Pase) system participates in the regulation of glucose homeostasis by converting glucose-6-phosphate (G6P) into glucose and inorganic phosphates. We have used an RT-PCR-based cloning and sequencing approach to study the expression of components of the G6Pase system in the hypothalamus and cortex tissues of the ob/ob mouse. We observed the expression of hepatic G6Pase catalytic subunit, G6PC, in both tissues, although increased template inputs were required for its detection. Conversely, expression of both the mouse homologue of the previously-described brain-specific G6P translocase T1 (G6PT1) variant and of the hepatic G6PT1 isoform was easily detectable in hypothalamus and cortex tissues. Of the proposed G6Pase catalytic subunit homologues, the expression of murine ubiquitous G6Pase catalytic subunit-related protein (UGRP, G6PC3) was also easily detectable in both tissues. However, islet-specific G6Pase catalytic subunit-related protein (IGRP, G6PC2) was expressed in a tissue-specific manner, and was detectable only in hypothalamus tissue at increased template inputs. We conclude that cells within ob/ob mouse hypothalamus and cortex tissues express genes with either established or proposed roles in G6P hydrolysis.  相似文献   
102.
Development of the multilayered cerebral cortex involves extensive regulated migration of neurons arising from the deeper germinative layers of the mammalian brain. The anatomy and formation of the cortical layers has been well characterized; however, the underlying molecular mechanisms that control the migration and the final positioning of neurons within the cortex remain poorly understood. Here, we report evidence for a key role of Ena/VASP proteins, a protein family implicated in the spatial control of actin assembly and previously shown to negatively regulate fibroblast cell speeds, in cortical development. Ena/VASP proteins are highly expressed in the developing cortical plate in cells bordering Reelin-expressing Cajal-Retzius cells and in the intermediate zone through which newly born cells migrate. Inhibition of Ena/VASP function through retroviral injections in utero led to aberrant placement of early-born pyramidal neurons in the superficial layers of both the embryonic and the postnatal cortex in a cell-autonomous fashion. The abnormally placed pyramidal neurons exhibited grossly normal morphology and polarity. Our results are consistent with a model in which Ena/VASP proteins function in vivo to control the position of neurons in the mouse neocortex.  相似文献   
103.
Myopia is a complex genetic disorder and a common cause of visual impairment among working age adults. Genome-wide association studies have identified susceptibility loci on chromosomes 15q14 and 15q25 in Caucasian populations of European ancestry. Here, we present a confirmation and meta-analysis study in which we assessed whether these two loci are also associated with myopia in other populations. The study population comprised 31 cohorts from the Consortium of Refractive Error and Myopia (CREAM) representing 4 different continents with 55,177 individuals; 42,845 Caucasians and 12,332 Asians. We performed a meta-analysis of 14 single nucleotide polymorphisms (SNPs) on 15q14 and 5 SNPs on 15q25 using linear regression analysis with spherical equivalent as a quantitative outcome, adjusted for age and sex. We calculated the odds ratio (OR) of myopia versus hyperopia for carriers of the top-SNP alleles using a fixed effects meta-analysis. At locus 15q14, all SNPs were significantly replicated, with the lowest P value 3.87?×?10(-12) for SNP rs634990 in Caucasians, and 9.65?×?10(-4) for rs8032019 in Asians. The overall meta-analysis provided P value 9.20?×?10(-23) for the top SNP rs634990. The risk of myopia versus hyperopia was OR 1.88 (95?% CI 1.64, 2.16, P?相似文献   
104.
PTEN (phosphatase and tensin homologue deleted on chromosome TEN) is the major negative regulator of phosphatidylinositol 3-kinase signaling and has cell-specific functions including tumor suppression. Nuclear localization of PTEN is vital for tumor suppression; however, outside of cancer, the molecular and physiological events driving PTEN nuclear entry are unknown. In this paper, we demonstrate that cytoplasmic Pten was translocated into the nuclei of neurons after cerebral ischemia in mice. Critically, this transport event was dependent on a surge in the Nedd4 family-interacting protein 1 (Ndfip1), as neurons in Ndfip1-deficient mice failed to import Pten. Ndfip1 binds to Pten, resulting in enhanced ubiquitination by Nedd4 E3 ubiquitin ligases. In vitro, Ndfip1 overexpression increased the rate of Pten nuclear import detected by photobleaching experiments, whereas Ndfip1(-/-) fibroblasts showed negligible transport rates. In vivo, Ndfip1 mutant mice suffered larger infarct sizes associated with suppressed phosphorylated Akt activation. Our findings provide the first physiological example of when and why transient shuttling of nuclear Pten occurs and how this process is critical for neuron survival.  相似文献   
105.
As H. pylori infection progresses, intestinal metaplasia (IM), a key event in gastric carcinogenesis, develops in the stomach. The mechanism by which H. pylori infection causes the trans-differentiation of gastric cells to intestinal-type cells remains an important question. In the current study, we found that RUNX3 is deregulated in all human IM specimens examined by either down regulation or mislocalization; Aberrant localization of a gastric tumor suppressor RUNX3 is observed in most human cases of IM with concurrent H. pylori infection, and RUNX3 is down-regulated in most cases of IM without H. pylori-infection. The cytoplasmic mislocalization of a RUNX3 was associated with H. pylori-induced c-Src activation and RUNX tyrosine phosphorylation. Moreover, gastric epithelial cells of Runx3(-/-) mice expressed the intestinal markers Muc2 and Li-Cadherin, which suggests that the deregulation of Runx3 is a key event in the intestinalization of the gastric epithelium. Collectively, the results of the current study suggest that RUNX3 deregulation is associated with H. pylori-induced pathogenesis and the development of IM.  相似文献   
106.
Scaling relationships have been formulated to investigate the influence of collagen fibril diameter (D) on age-related variations in the strain energy density of tendon. Transmission electron microscopy was used to quantify D in tail tendon from 1.7- to 35.3-mo-old (C57BL/6) male mice. Frequency histograms of D for all age groups were modeled as two normally distributed subpopulations with smaller (D(D1)) and larger (D(D2)) mean Ds, respectively. Both D(D1) and D(D2) increase from 1.6 to 4.0 mo but decrease thereafter. From tensile tests to rupture, two strain energy densities were calculated: 1) u(E) [from initial loading until the yield stress (σ(Y))], which contributes primarily to tendon resilience, and 2) u(F) [from σ(Y) through the maximum stress (σ(U)) until rupture], which relates primarily to resistance of the tendons to rupture. As measured by the normalized strain energy densities u(E)/σ(Y) and u(F)/σ(U), both the resilience and resistance to rupture increase with increasing age and peak at 23.0 and 4.0 mo, respectively, before decreasing thereafter. Multiple regression analysis reveals that increases in u(E)/σ(Y) (resilience energy) are associated with decreases in D(D1) and increases in D(D2), whereas u(F)/σ(U) (rupture energy) is associated with increases in D(D1) alone. These findings support a model where age-related variations in tendon resilience and resistance to rupture can be directed by subtle changes in the bimodal distribution of Ds.  相似文献   
107.
The E3 ubiquitin ligase Pellino 1 can be interconverted between inactive and active forms by a reversible phosphorylation mechanism. In vitro, phosphorylation and activation can be catalysed by either the IRAKs [IL (interleukin)-1-receptor-associated kinases] IRAK1 and IRAK4, or the IKK {IκB [inhibitor of NF-κB (nuclear factor κB)] kinase}-related kinases [IKK? and TBK1 (TANK {TRAF [TNF (tumour-necrosis-factor)-receptor-associated factor]-associated NF-κB activator}-binding kinase 1)]. In the present study we establish that IRAK1 is the major protein kinase that mediates the IL-1-stimulated activation of Pellino 1 in MEFs (mouse embryonic fibroblasts) or HEK (human embryonic kidney)-293 cells, whereas the IKK-related kinases activate Pellino 1 in TNFα-stimulated MEFs. The IKK-related kinases are also the major protein kinases that activate Pellino 1 in response to TLR (Toll-like receptor) ligands that signal via the adaptors MyD88 (myeloid differentiation primary response gene 88) and/or TRIF [TIR (Toll/IL-1 receptor) domain-containing adaptor protein inducing interferon β]. The present studies demonstrate that, surprisingly, the ligands that signal via MyD88 do not always employ the same protein kinase to activate Pellino 1. Our results also establish that neither the catalytic activity of IRAK1 nor the activation of Pellino 1 is required for the initial transient activation of NF-κB and MAPKs (mitogen-activated protein kinases) that is triggered by IL-1 or TNFα in MEFs, or by TLR ligands in macrophages. The activation of Pellino 1 provides the first direct readout for IRAK1 catalytic activity in cells.  相似文献   
108.
The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. Our?study implicates five networks of kinases that?regulate the switch to polyploidy. Moreover, we find that dimethylfasudil (diMF, H-1152P) selectively increased polyploidization, mature cell-surface marker expression, and apoptosis of malignant megakaryocytes. An integrated target identification approach employing proteomic and shRNA screening revealed that a major target of diMF is Aurora kinase A (AURKA). We further find that MLN8237 (Alisertib), a selective inhibitor of AURKA, induced polyploidization and expression of mature megakaryocyte markers in acute megakaryocytic leukemia (AMKL) blasts and displayed potent anti-AMKL activity in?vivo. Our findings provide a rationale to support clinical trials of MLN8237 and other inducers of polyploidization and differentiation in AMKL.  相似文献   
109.
Zhang P  Haryadi R  Chan KF  Teo G  Goh J  Pereira NA  Feng H  Song Z 《Glycobiology》2012,22(7):897-911
The GDP-fucose transporter SLC35C1 critically regulates the fucosylation of glycans. Elucidation of its structure-function relationships remains a challenge due to the lack of an appropriate mutant cell line. Here we report a novel Chinese hamster ovary (CHO) mutant, CHO-gmt5, generated by the zinc-finger nuclease technology, in which the Slc35c1 gene was knocked out from a previously reported CHO mutant that has a dysfunctional CMP-sialic acid transporter (CST) gene (Slc35a1). Consequently, CHO-gmt5 harbors double genetic defects in Slc35a1 and Slc35c1 and produces N-glycans deficient in both sialic acid and fucose. The structure-function relationships of SLC35C1 were studied using CHO-gmt5 cells. In contrast to the CST and UDP-galactose transporter, the C-terminal tail of SLC35C1 is not required for its Golgi localization but is essential for generating glycans that are recognized by a fucose-binding lectin, Aleuria aurantia lectin (AAL), suggesting an important role in the transport activity of SLC35C1. Furthermore, we found that this impact can be independently contributed by a cluster of three lysine residues and a Glu-Met (EM) sequence within the C terminus. We also showed that the conserved glycine residues at positions 180 and 277 of SLC35C1 have significant impacts on AAL binding to CHO-gmt5 cells, suggesting that these conserved glycine residues are required for the transport activity of Slc35 proteins. The absence of sialic acid and fucose on Fc N-glycan has been independently shown to enhance the antibody-dependent cellular cytotoxicity (ADCC) effect. By combining these features into one cell line, we postulate that CHO-gmt5 may represent a more advantageous cell line for the production of recombinant antibodies with enhanced ADCC effect.  相似文献   
110.
Ligand efficient fragments binding to PDK1 were identified by an NMR fragment-based screening approach. Computational modeling of the fragments bound to the active site led to the design and synthesis of a series of novel 6,7-disubstituted thienopyrimidin-4-one compounds, with low micromolar inhibitory activity against PDK1 in a biochemical enzyme assay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号