首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   871篇
  免费   76篇
  国内免费   1篇
  948篇
  2023年   4篇
  2022年   12篇
  2021年   20篇
  2020年   4篇
  2019年   17篇
  2018年   20篇
  2017年   18篇
  2016年   23篇
  2015年   42篇
  2014年   44篇
  2013年   51篇
  2012年   72篇
  2011年   58篇
  2010年   49篇
  2009年   38篇
  2008年   50篇
  2007年   43篇
  2006年   32篇
  2005年   35篇
  2004年   41篇
  2003年   27篇
  2002年   27篇
  2001年   22篇
  2000年   25篇
  1999年   18篇
  1998年   23篇
  1997年   15篇
  1996年   16篇
  1995年   9篇
  1994年   6篇
  1993年   4篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   7篇
  1976年   6篇
  1975年   3篇
  1970年   2篇
  1968年   3篇
排序方式: 共有948条查询结果,搜索用时 15 毫秒
131.
The 26S proteasome is essential for the proteolysis of proteins that have been covalently modified by the attachment of polyubiquitinated chains. Although the 20S core particle performs the degradation, the 19S regulatory cap complex is responsible for recognition of polyubiquitinated substrates. We have focused on how the S5a component of the 19S complex interacts with different ubiquitin-like (ubl) modules, to advance our understanding of how polyubiquitinated proteins are targeted to the proteasome. To achieve this, we have determined the solution structure of the ubl domain of hPLIC-2 and obtained a structural model of hHR23a by using NMR spectroscopy and homology modeling. We have also compared the S5a binding properties of ubiquitin, SUMO-1, and the ubl domains of hPLIC-2 and hHR23a and have identified the residues on their respective S5a contact surfaces. We provide evidence that the S5a-binding surface on the ubl domain of hPLIC-2 is required for its interaction with the proteasome. This study provides structural insights into protein recognition by the proteasome, and illustrates how the protein surface of a commonly utilized fold has highly evolved for various biological roles.  相似文献   
132.
We investigated the effects of lactoferrin on the growth of L. acidophilus CH-2, Bifidobacterium breve ATCC 15700, B. longum ATCC 15707, B. infantis ATCC 15697, and B. bifidum ATCC 15696. The growth of L. acidophilus was stimulated by bovine holo-lactoferrin but not by apo-lactoferrin. With bifidobacteria, bovine lactoferrin stimulated growth of three strains: B. breve, B. infantis and B. bifidum under certain conditions. Both apoprotein and holoprotein had similar effects. However, B. longum growth was not affected by lactoferrin. Thus, the mechanism of stimulating growth of bifidobacteria may be different from that of L. acidophilus. By far-western blotting using biotinylated lactoferrin and horseradish peroxidase-conjugated streptavidin, lactoferrin-binding proteins were detected in the membrane protein fraction of L. acidophilus, B. bifidum, B. infantis and B. breve. The molecular weights of lactoferrin-binding proteins of L. acidophilus were estimated from SDS-polyacrylamide gel electrophoresis to be 27, 41 and 67 kDa, and those of the three bifidobacterial strains were estimated to be 67-69 kDa. However, no such lactoferrin-binding components were detected in the membrane fraction of B. longum. It is interesting that the appearance of lactoferrin-binding proteins in the membrane fraction of these species corresponds to their growth stimulation by lactoferrin.  相似文献   
133.
134.
135.
The breakthrough in derivation of human‐induced pluripotent stem cells (hiPSCs) provides an approach that may help overcome ethical and allergenic challenges posed in numerous medical applications involving human cells, including neural stem/progenitor cells (NSCs). Considering the great potential of NSCs in targeted cancer gene therapy, we investigated in this study the tumor tropism of hiPSC‐derived NSCs and attempted to enhance the tropism by manipulation of biological activities of proteins that are involved in regulating the migration of NSCs toward cancer cells. We first demonstrated that hiPSC‐NSCs displayed tropism for both glioblastoma cells and breast cancer cells in vitro and in vivo. We then compared gene expression profiles between migratory and non‐migratory hiPSC‐NSCs toward these cancer cells and observed that the gene encoding neuronal nitric oxide synthase (nNOS) was down‐regulated in migratory hiPSC‐NSCs. Using nNOS inhibitors and nNOS siRNAs, we demonstrated that this protein is a relevant regulator in controlling migration of hiPSC‐NSCs toward cancer cells, and that inhibition of its activity or down‐regulation of its expression can sensitize poorly migratory NSCs and be used to improve their tumor tropism. These findings suggest a novel application of nNOS inhibitors in neural stem cell‐mediated cancer therapy.  相似文献   
136.
Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAPamypgm genes. Expression of the glg operon and glycogen accumulation were carbon source‐ and growth phase‐dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log‐phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose‐grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen‐branching enzyme) mutants are glycogen‐deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus.  相似文献   
137.
The suitability of traditional microbial indicators (i.e., Escherichia coli and enterococci) has been challenged due to the lack of correlation with pathogens and evidence of possible regrowth in the natural environment. In this study, the relationships between alternative microbial indicators of potential human fecal contamination (Bacteroides thetaiotaomicron, Methanobrevibacter smithii, human polyomaviruses [HPyVs], and F+ and somatic coliphages) and pathogens (Salmonella spp., Pseudomonas aeruginosa, rotavirus, astrovirus, norovirus GI, norovirus GII, and adenovirus) were compared with those of traditional microbial indicators, as well as environmental parameters (temperature, conductivity, salinity, pH, dissolved oxygen, total organic carbon, total suspended solids, turbidity, total nitrogen, and total phosphorus). Water samples were collected from surface waters of urban catchments in Singapore. Salmonella and P. aeruginosa had significant positive correlations with most of the microbial indicators, especially E. coli and enterococci. Norovirus GII showed moderately strong positive correlations with most of the microbial indicators, except for HPyVs and coliphages. In general, high geometric means and significant correlations between human-specific markers and pathogens suggest the possibility of sewage contamination in some areas. The simultaneous detection of human-specific markers (i.e., B. thetaiotaomicron, M. smithii, and HPyVs) with E. coli and enterococcus supports the likelihood of recent fecal contamination, since the human-specific markers are unable to regrow in natural surface waters. Multiple-linear-regression results further confirm that the inclusion of M. smithii and HPyVs, together with traditional indicators, would better predict the occurrence of pathogens. Further study is needed to determine the applicability of such models to different geographical locations and environmental conditions.  相似文献   
138.
Tissue engineering involves ex vivo seeding of anchorage-dependent mammalian cells onto scaffolds, or transplanting cells in vivo. The cell expansion currently requires repeated cell detachment from solid substrata by enzymatic, chemical or mechanical means. The report here presents a high yield three-dimensional culture and harvest system circumventing the conventional detachment requirements. Cells mixed with dilute cationic collagen were microencapsulated within an ultra-thin shell of synthetic polymers. The cationic collagen could rapidly form a conformal layer of collagen fibers around cells to support cell proliferation and functions. The collagen could be readily removed from cells with a buffer rinse after harvesting from the fragile microcapsules. The cells harvested from this system demonstrate improved attachment, morphology and functions over conventionally cultured cells, upon binding to ligand-conjugated polymer surfaces. The harvested cells can be re-encapsulated and allowed to proliferate again, or used immediately in applications.  相似文献   
139.
A gas chromatographic method for the separation and quantitation of the 20 protein amino acids is described using N-methyl-N(tert.-butyldimethylsilyl)trifluoroacetamide, with 1% tert.-butyldimethylchlorosilane as catalyst, to prepare the tert.-butyldimethylsilyl amino acid derivatives. Alkylsilylation of amino acids proceeds at 140 degrees C in 20 min. The derivatives formed in the one-step reaction are used directly for gas-liquid chromatographic analysis, using a flame-ionization detector, without prior isolation or purification. Complete separation and quantitation of all protein amino acids are readily achieved using a 15-m DB-5 capillary column. Strict linearity extends from less than 15 to about 100 ng for all amino acids except Arg, which has a linear range from 50 to 300 ng. The limits of detection, however, range from one to several hundred nanograms. The method was used to analyze the free amino acid pool in carnation petals.  相似文献   
140.
Li M  Liu J  Ran X  Fang M  Shi J  Qin H  Goh JM  Song J 《Biophysical journal》2006,91(11):4201-4209
Many proteins expressed in Escherichia coli cells form inclusion bodies that are neither refoldable nor soluble in buffers. Very surprisingly, we recently discovered that all 11 buffer-insoluble protein fragments/domains we have, with a great diversity of cellular function, location, and molecular size, could be easily solubilized in salt-free water. The circular dichroism (CD) and NMR characterization led to classification of these proteins into three groups: group 1, with no secondary structure by CD and with narrowly-dispersed but sharp (1)H-(15)N heteronuclear single quantum correlation (HSQC) peaks; group 2, with secondary structure by CD but with HSQC peaks broadened and, consequently, only a small set of peaks detectable; and group 3, with secondary structure by CD and also well-separated HSQC peaks. Intriguingly, we failed to find any protein with a tight tertiary packing. Therefore, we propose that buffer-insoluble proteins may lack intrinsic ability to reach or/and to maintain a well-packed conformation, and thus are trapped in partially-folded states with many hydrophobic side chains exposed to the bulk solvent. As such, a very low ionic strength is sufficient to screen out intrinsic repulsive interactions and, consequently, allow the hydrophobic clustering/aggregation to occur. Marvelously enough, it appears that in pure water, proteins have the potential to manifest their full spectrum of structural states by utilizing intrinsic repulsive interactions to suppress the attractive hydrophobic clustering. Our discovery not only gives a novel insight into the properties of insoluble proteins, but also sheds the first light that we know of on previously unknown regimes associated with proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号