首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   871篇
  免费   75篇
  国内免费   1篇
  2023年   3篇
  2022年   12篇
  2021年   20篇
  2020年   4篇
  2019年   17篇
  2018年   20篇
  2017年   18篇
  2016年   23篇
  2015年   42篇
  2014年   44篇
  2013年   51篇
  2012年   72篇
  2011年   58篇
  2010年   49篇
  2009年   38篇
  2008年   50篇
  2007年   43篇
  2006年   32篇
  2005年   35篇
  2004年   41篇
  2003年   27篇
  2002年   27篇
  2001年   22篇
  2000年   25篇
  1999年   18篇
  1998年   23篇
  1997年   15篇
  1996年   16篇
  1995年   9篇
  1994年   6篇
  1993年   4篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   7篇
  1976年   6篇
  1975年   3篇
  1970年   2篇
  1968年   3篇
排序方式: 共有947条查询结果,搜索用时 15 毫秒
111.
The E3 ubiquitin ligase Pellino 1 can be interconverted between inactive and active forms by a reversible phosphorylation mechanism. In vitro, phosphorylation and activation can be catalysed by either the IRAKs [IL (interleukin)-1-receptor-associated kinases] IRAK1 and IRAK4, or the IKK {IκB [inhibitor of NF-κB (nuclear factor κB)] kinase}-related kinases [IKK? and TBK1 (TANK {TRAF [TNF (tumour-necrosis-factor)-receptor-associated factor]-associated NF-κB activator}-binding kinase 1)]. In the present study we establish that IRAK1 is the major protein kinase that mediates the IL-1-stimulated activation of Pellino 1 in MEFs (mouse embryonic fibroblasts) or HEK (human embryonic kidney)-293 cells, whereas the IKK-related kinases activate Pellino 1 in TNFα-stimulated MEFs. The IKK-related kinases are also the major protein kinases that activate Pellino 1 in response to TLR (Toll-like receptor) ligands that signal via the adaptors MyD88 (myeloid differentiation primary response gene 88) and/or TRIF [TIR (Toll/IL-1 receptor) domain-containing adaptor protein inducing interferon β]. The present studies demonstrate that, surprisingly, the ligands that signal via MyD88 do not always employ the same protein kinase to activate Pellino 1. Our results also establish that neither the catalytic activity of IRAK1 nor the activation of Pellino 1 is required for the initial transient activation of NF-κB and MAPKs (mitogen-activated protein kinases) that is triggered by IL-1 or TNFα in MEFs, or by TLR ligands in macrophages. The activation of Pellino 1 provides the first direct readout for IRAK1 catalytic activity in cells.  相似文献   
112.
The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. Our?study implicates five networks of kinases that?regulate the switch to polyploidy. Moreover, we find that dimethylfasudil (diMF, H-1152P) selectively increased polyploidization, mature cell-surface marker expression, and apoptosis of malignant megakaryocytes. An integrated target identification approach employing proteomic and shRNA screening revealed that a major target of diMF is Aurora kinase A (AURKA). We further find that MLN8237 (Alisertib), a selective inhibitor of AURKA, induced polyploidization and expression of mature megakaryocyte markers in acute megakaryocytic leukemia (AMKL) blasts and displayed potent anti-AMKL activity in?vivo. Our findings provide a rationale to support clinical trials of MLN8237 and other inducers of polyploidization and differentiation in AMKL.  相似文献   
113.
Zhang P  Haryadi R  Chan KF  Teo G  Goh J  Pereira NA  Feng H  Song Z 《Glycobiology》2012,22(7):897-911
The GDP-fucose transporter SLC35C1 critically regulates the fucosylation of glycans. Elucidation of its structure-function relationships remains a challenge due to the lack of an appropriate mutant cell line. Here we report a novel Chinese hamster ovary (CHO) mutant, CHO-gmt5, generated by the zinc-finger nuclease technology, in which the Slc35c1 gene was knocked out from a previously reported CHO mutant that has a dysfunctional CMP-sialic acid transporter (CST) gene (Slc35a1). Consequently, CHO-gmt5 harbors double genetic defects in Slc35a1 and Slc35c1 and produces N-glycans deficient in both sialic acid and fucose. The structure-function relationships of SLC35C1 were studied using CHO-gmt5 cells. In contrast to the CST and UDP-galactose transporter, the C-terminal tail of SLC35C1 is not required for its Golgi localization but is essential for generating glycans that are recognized by a fucose-binding lectin, Aleuria aurantia lectin (AAL), suggesting an important role in the transport activity of SLC35C1. Furthermore, we found that this impact can be independently contributed by a cluster of three lysine residues and a Glu-Met (EM) sequence within the C terminus. We also showed that the conserved glycine residues at positions 180 and 277 of SLC35C1 have significant impacts on AAL binding to CHO-gmt5 cells, suggesting that these conserved glycine residues are required for the transport activity of Slc35 proteins. The absence of sialic acid and fucose on Fc N-glycan has been independently shown to enhance the antibody-dependent cellular cytotoxicity (ADCC) effect. By combining these features into one cell line, we postulate that CHO-gmt5 may represent a more advantageous cell line for the production of recombinant antibodies with enhanced ADCC effect.  相似文献   
114.
Ligand efficient fragments binding to PDK1 were identified by an NMR fragment-based screening approach. Computational modeling of the fragments bound to the active site led to the design and synthesis of a series of novel 6,7-disubstituted thienopyrimidin-4-one compounds, with low micromolar inhibitory activity against PDK1 in a biochemical enzyme assay.  相似文献   
115.
In Arabidopsis thaliana, lateral root (LR) formation is regulated by multiple auxin/indole-3-acetic acid (Aux/IAA)–AUXIN RESPONSE FACTOR (ARF) modules: (i) the IAA28–ARFs module regulates LR founder cell specification; (ii) the SOLITARY-ROOT (SLR)/IAA14–ARF7–ARF19 module regulates nuclear migration and asymmetric cell divisions of the LR founder cells for LR initiation; and (iii) the BODENLOS/IAA12–MONOPTEROS/ARF5 module also regulates LR initiation and organogenesis. The number of Aux/IAA–ARF modules involved in LR formation remains unknown. In this study, we isolated the shy2-101 mutant, a gain-of-function allele of short hypocotyl2/suppressor of hy2 (shy2)/iaa3 in the Columbia accession. We demonstrated that the shy2-101 mutation not only strongly inhibits LR primordium development and emergence but also significantly increases the number of LR initiation sites with the activation of LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18, a target gene of the SLR/IAA14–ARF7–ARF19 module. Genetic analysis revealed that enhanced LR initiation in shy2-101 depended on the SLR/IAA14–ARF7–ARF19 module. We also showed that the shy2 roots contain higher levels of endogenous IAA. These observations indicate that the SHY2/IAA3–ARF-signalling module regulates not only LR primordium development and emergence after SLR/IAA14–ARF7–ARF19 module-dependent LR initiation but also inhibits LR initiation by affecting auxin homeostasis, suggesting that multiple Aux/IAA–ARF modules cooperatively regulate the developmental steps during LR formation.  相似文献   
116.
Fusarium graminearum Schwabe is the primary cause of Fusarium head blight (FHB) in North America. Chemically distinct F. graminearum sub-populations can be identified based on the type or composition of deoxynivalenol (DON) mycotoxin derivatives, including 3-acetyl (3-ADON) and 15-acetyl (15-ADON). The evaluation of randomly selected 3-ADON and 15-ADON isolates, collected from spring wheat throughout Canada, was performed using thin layer chromatography (TLC), high-performance liquid chromatography (HPLC), ice-nucleation activity (INA), and heat and cold tolerance tests conducted within a temperature range of −70°C to 65°C. The results indicated that the 3-ADON sub-population, which is responsible for the highest disease severity and has rapidly displaced the 15-ADON sub-population, produces more DON and zearalenone (ZEA) than the 15-ADON sub-population when exposed to heat and cold. Following exposures (1 and 2 h) to extremely high or low temperatures, 3-ADON isolates exhibited faster mycelial growth than 15-ADON isolates. In addition, the warmest temperature at which INA activity occurred was in 3-ADON (−3.6°C) vs. 15-ADON (−5.1°C). Taken together, these features suggest that the newly emerging 3-ADON sub-population is more resilient than the resident 15-ADON sub-population. Overall, the differences between the two sub-populations could provide new insights into FHB epidemiology and if validated under field conditions, may provide important information for predicting future FHB epidemics.  相似文献   
117.
LF Kua  S Ross  SC Lee  K Mimura  K Kono  BC Goh  WP Yong 《PloS one》2012,7(8):e42873
Uridine diphosphoglucuronosyltransferases (UGTs) 1A6 is the only UGT1A isoform expressed in lung tissue. It is responsible for the detoxification of carcinogens such as benezo[a]pyrene from cigarette smoke. The purpose of this study was to evaluate the association of UGT1A6 polymorphisms and haplotypes with lung cancer risk and to evaluate the functional significance of UGT1A6 polymorphisms. Genomic DNA was isolated from leukocytes. Eight UGT1A6 polymorphisms were sequenced in a test set of 72 Chinese lung cancer patients and 62 healthy controls. Potential risk modifying alleles were validated in a separate set of 95 Chinese lung cancer patients and 100 healthy controls. UGT1A6 19T>G, 541A>G and 552A>C showed significant association with increased lung cancer risk, while UGT1A6 105C>T and IVS1+130G>T were significantly associated with reduced lung cancer risk. Multivariate logistic regression analysis demonstrated a significant association of lung cancer with UGT1A6 541A>G (OR: 3.582, 95% CI: 1.27–10.04, p = 0.015), 552A>C (OR: 5.364, 95% CI: 1.92–14.96, p = 0.001) and IVS1+130G>T (OR: 0.191, 95% CI: 0.09–0.36, p<0.001). Functional test demonstrated that UGT1A6 105C>T increased mRNA stability, providing a plausible explanation of its association with reduced lung cancer risk. Thus UGT1A6 polymorphisms may be used to identify people with increased risk of developing lung cancer.  相似文献   
118.
Gelsolin is a cytoskeletal protein which participates in actin filament dynamics and promotes cell motility and plasticity. Although initially regarded as a tumor suppressor, gelsolin expression in certain tumors correlates with poor prognosis and therapy-resistance. In vitro, gelsolin has anti-apoptotic and pro-migratory functions and is critical for invasion of some types of tumor cells. We found that gelsolin was highly expressed at tumor borders infiltrating into adjacent liver tissues, as examined by immunohistochemistry. Although gelsolin contributes to lamellipodia formation in migrating cells, the mechanisms by which it induces tumor invasion are unclear. Gelsolin's influence on the invasive activity of colorectal cancer cells was investigated using overexpression and small interfering RNA knockdown. We show that gelsolin is required for invasion of colorectal cancer cells through matrigel. Microarray analysis and quantitative PCR indicate that gelsolin overexpression induces the upregulation of invasion-promoting genes in colorectal cancer cells, including the matrix-degrading urokinase-type plasminogen activator (uPA). Conversely, gelsolin knockdown reduces uPA levels, as well as uPA secretion. The enhanced invasiveness of gelsolin-overexpressing cells was attenuated by treatment with function-blocking antibodies to either uPA or its receptor uPAR, indicating that uPA/uPAR activity is crucial for gelsolin-dependent invasion. In summary, our data reveals novel functions of gelsolin in colorectal tumor cell invasion through its modulation of the uPA/uPAR cascade, with potentially important roles in colorectal tumor dissemination to metastatic sites.  相似文献   
119.
120.
Goh WW  Lee YH  Chung M  Wong L 《Proteomics》2012,12(4-5):550-563
Proteomics provides important information--that may not be inferable from indirect sources such as RNA or DNA--on key players in biological systems or disease states. However, it suffers from coverage and consistency problems. The advent of network-based analysis methods can help in overcoming these problems but requires careful application and interpretation. This review considers briefly current trends in proteomics technologies and understanding the causes of critical issues that need to be addressed--i.e., incomplete data coverage and inter-sample inconsistency. On the coverage issue, we argue that holistic analysis based on biological networks provides a suitable background on which more robust models and interpretations can be built upon; and we introduce some recently developed approaches. On consistency, group-based approaches based on identified clusters, as well as on properly integrated pathway databases, are particularly useful. Despite that protein interactions and pathway networks are still largely incomplete, given proper quality checks, applications and reasonably sized data sets, they yield valuable insights that greatly complement data generated from quantitative proteomics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号