首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   5篇
  国内免费   1篇
  91篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2013年   1篇
  2012年   5篇
  2011年   12篇
  2010年   6篇
  2009年   3篇
  2008年   5篇
  2007年   6篇
  2006年   6篇
  2005年   4篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1998年   3篇
  1994年   1篇
  1990年   1篇
  1988年   1篇
  1985年   2篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1971年   3篇
  1970年   2篇
  1957年   1篇
  1955年   2篇
  1950年   1篇
  1942年   1篇
  1940年   1篇
排序方式: 共有91条查询结果,搜索用时 0 毫秒
61.
62.

Background  

Integrins comprise a large family of α,β heterodimeric, transmembrane cell adhesion receptors that mediate diverse essential biological functions. Higher vertebrates possess a single β1 gene, and the β1 subunit associates with a large number of α subunits to form the major class of extracellular matrix (ECM) receptors. Despite the fact that the zebrafish (Danio rerio) is a rapidly emerging model organism of choice for developmental biology and for models of human disease, little is currently known about β1 integrin sequences and functions in this organism.  相似文献   
63.
Nitrogen (N) availability is a key role in food and fiber production. Providing plant-available N through synthetic fertilizer in the 20th and early 21st century has been a major contributor to the increased production required to feed and clothe the growing human population. To continue to meet the global demands and to minimize environmental problems, significant improvements are needed in the efficiency with which fertilizer N is utilized within production systems. There are still major uncertainties regarding the fate of fertilizer N added to agricultural soils and the potential for reducing losses to the environment. Enhancing the technical and economic efficiency of fertilizer N is seen to promote a favorable situation for both agricultural production and the environment, and this has provided much of the impetus for a new N fertilizer project. To address this important issue, a rapid assessment project on N fertilizer (NFRAP) was conducted by SCOPE (the Scientific Committee on Problems of the Environment) during late 2003 and early 2004. This was the first formal project of the International Nitrogen Initiative (INI). As part of this assessment, a successful international workshop was held in Kampala, Uganda on 12 - 16 January, 2004. This workshop brought together scientists from around the world to assess the fate of synthetic fertilizer N in the context of overall N inputs to agricultural systems, with a view to enhancing the efficiency of N use and reducing negative impacts on the environment. Regionalization of the assessment highlighted the problems of too little N for crop production to meet the nutrient requirements of sub-Saharan Africa and the oversupply of N in the major rice-growing areas of China. The results of the assessment are presented in a book (SCOPE 65) which is now available to provide a basis for further discussions on N fertilizer.  相似文献   
64.
65.
66.
Four young men involved in high-speed car crashes developed cardiovascular trauma. Two patients had aortic aneurysms, one rupture of the mitral valve, and one ventricular septal defect; successful surgical correction was undertaken in all. The importance of considering the possibility of cardiovascular trauma in these circumstances is emphasized, and x-ray films (repeated if necessary) should be taken even when there are no external signs of trauma.  相似文献   
67.
Prion diseases or transmissible spongiform encephalopathies (TSEs) are infectious and fatal neurodegenerative disorders in humans and animals. Pathological features of TSEs include the conversion of cellular prion protein (PrP(C)) into an altered disease-associated conformation generally designated PrP(Sc), abnormal deposition of PrP(Sc) aggregates, and spongiform degeneration of the brain. The molecular steps leading to PrP(C) aggregation are unknown. Here, we have utilized an inducible oligomerization strategy to test if, in the absence of any infectious prion particles, the encounter between PrP(C) molecules may trigger its aggregation in neuronal cells. A chimeric PrP(C) composed of one (Fv1) or two (Fv2) modified FK506-binding protein (Fv) fused with PrP(C) were created, and transfected in N2a cells. Similar to PrP(C), Fv1-PrP and Fv2-PrP were glycosylated, displayed normal localization, and anti-apoptotic function. When cells were treated with the dimeric Fv ligand AP20187, to induce dimerization (Fv1) or oligomerization (Fv2) of PrP(C), both dimerization and oligomerization of PrP(C) resulted in the de novo production, release and deposition of extracellular PrP aggregates. Aggregates were insoluble in non-ionic detergents and partially resistant to proteinase K. These findings demonstrate that homologous interactions between PrP(C) molecules may constitute a minimal and sufficient molecular event leading to PrP(C) aggregation and extracellular deposition.  相似文献   
68.
Plant-aphid interactions: molecular and ecological perspectives   总被引:3,自引:0,他引:3  
Many aphids are major agricultural pests because of their unparalleled reproductive capacity and their ability to manipulate host plant physiology. Aphid population growth and its impact on plant fitness are strongly influenced by interactions with other organisms, including plant pathogens, endophytes, aphid endosymbionts, predators, parasitoids, ants, and other herbivores. Numerous molecular and genomic resources have recently been developed to identify sources of aphid resistance in plants, as well as potentially novel targets for control in aphids. Moreover, the same model systems that are used to explore direct molecular interactions between plants and aphids can be utilized to study the ecological context in which they occur.  相似文献   
69.
Navarro  NP  Korbee  N  Jofre  J  Figueroa  FL 《Journal of applied phycology》2021,33(4):2537-2546
Journal of Applied Phycology - The effect of solar UV radiation exposure and NO3– supply on mycosporine-like amino acids (MAAs) accumulation in the carrageenan-producing red macroalga...  相似文献   
70.
Seed persistence is the survival of seeds in the environment once they have reached maturity. Seed persistence allows a species, population or genotype to survive long after the death of parent plants, thus distributing genetic diversity through time. The ability to predict seed persistence accurately is critical to inform long‐term weed management and flora rehabilitation programs, as well as to allow a greater understanding of plant community dynamics. Indeed, each of the 420000 seed‐bearing plant species has a unique set of seed characteristics that determine its propensity to develop a persistent soil seed bank. The duration of seed persistence varies among species and populations, and depends on the physical and physiological characteristics of seeds and how they are affected by the biotic and abiotic environment. An integrated understanding of the ecophysiological mechanisms of seed persistence is essential if we are to improve our ability to predict how long seeds can survive in soils, both now and under future climatic conditions. In this review we present an holistic overview of the seed, species, climate, soil, and other site factors that contribute mechanistically to seed persistence, incorporating physiological, biochemical and ecological perspectives. We focus on current knowledge of the seed and species traits that influence seed longevity under ex situ controlled storage conditions, and explore how this inherent longevity is moderated by changeable biotic and abiotic conditions in situ, both before and after seeds are dispersed. We argue that the persistence of a given seed population in any environment depends on its resistance to exiting the seed bank via germination or death, and on its exposure to environmental conditions that are conducive to those fates. By synthesising knowledge of how the environment affects seeds to determine when and how they leave the soil seed bank into a resistance–exposure model, we provide a new framework for developing experimental and modelling approaches to predict how long seeds will persist in a range of environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号