首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   353篇
  免费   31篇
  384篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2018年   15篇
  2017年   9篇
  2016年   17篇
  2015年   10篇
  2014年   14篇
  2013年   17篇
  2012年   22篇
  2011年   19篇
  2010年   14篇
  2009年   11篇
  2008年   11篇
  2007年   14篇
  2006年   10篇
  2005年   15篇
  2004年   15篇
  2003年   15篇
  2002年   10篇
  2001年   9篇
  2000年   10篇
  1999年   8篇
  1998年   5篇
  1997年   7篇
  1996年   3篇
  1994年   4篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1989年   3篇
  1986年   4篇
  1985年   2篇
  1983年   2篇
  1982年   3篇
  1979年   4篇
  1976年   3篇
  1975年   4篇
  1974年   2篇
  1972年   2篇
  1971年   2篇
  1969年   2篇
  1968年   4篇
  1966年   2篇
  1965年   3篇
  1964年   2篇
  1942年   2篇
  1930年   2篇
  1887年   2篇
  1854年   8篇
排序方式: 共有384条查询结果,搜索用时 15 毫秒
91.
Cereals provide more than half the world population’s calorific intake, and have a variety of other important uses as food and beverage ingredients, livestock feeds, and as sources of renewable energy and industrial components. The technology to genetically modify many important cereals is now well-established, thereby presenting new opportunities to produce cereals with enhanced quality and novel properties. In 2007, GM (genetically modified) maize with insect and herbicide resistance was grown on over 30 million hectares worldwide, yet to date, there are no GM cereals with enhanced or novel grain (end-use) qualities being grown in commercial farmers’ fields. This review will discuss some of the latest GM technology developments reported to enhance the quality of cereals for food and other uses. Developments and opportunities involving gene manipulation for starch and protein quality, as well as non-starch polysaccharides, phenolic compounds and micronutrients will also be discussed. The current paucity of GM cereals with enhanced grain quality is not related to the absence of technological progress, rather it is the regulatory and consumer acceptance issues that have slowed the release of these crops.  相似文献   
92.
Microcystis is a cyanobacterium that forms toxic blooms in freshwater ecosystems around the world. Biological variation among taxa within the genus is apparent through genetic and phenotypic differences between strains and via the spatial and temporal distribution of strains in the environment, and this fine-scale diversity exerts strong influence over bloom toxicity. Yet we do not know how varying traits of Microcystis strains govern their environmental distribution, the tradeoffs and links between these traits, or how they are encoded at the genomic level. Here we synthesize current knowledge on the importance of diversity within Microcystis and on the genes and traits that likely underpin ecological differentiation of taxa. We briefly review spatial and environmental patterns of Microcystis diversity in the field and genetic evidence for cohesive groups within Microcystis. We then compile data on strain-level diversity regarding growth responses to environmental conditions and explore evidence for variation of community interactions across Microcystis strains. Potential links and tradeoffs between traits are identified and discussed. The resulting picture, while incomplete, highlights key knowledge gaps that need to be filled to enable new models for predicting strain-level dynamics, which influence the development, toxicity and cosmopolitan nature of Microcystis blooms.  相似文献   
93.
The entomopathogensSerratia marcescens Bizio and nucleopolyhedrosis virus were each fed alone and in combination with the parasiteBlepharipa pratensis (Meigen) to 4th-instar gypsy moth,Lymantria dispar, (L.) larvae. At LD30 for NPV, the presence of the parasite enhanced polyhedrosis about 30%, but the total number of gypsy moth larvae and pupae killed (85%) was not significantly different from the number killed by the parasite alone (93%). When the parasite was combined withS. marcencens, a strain nonpathogenic inL. dispar, total mortality was not significantly different from that in insects exposed only to the parasite (89 and 86%, respectively), but parasite survival was reduced about 12%. However, deaths not attributable to the parasite could not be ascribed to the bacterium either.  相似文献   
94.
In XX female mammals a single X chromosome is inactivated early in embryonic development, a process that is required to equalise X-linked gene dosage relative to XY males. X inactivation is regulated by a cis-acting master switch, the Xist locus, the product of which is a large non-coding RNA that coats the chromosome from which it is transcribed, triggering recruitment of chromatin modifying factors that establish and maintain gene silencing chromosome wide. Chromosome coating and Xist RNA-mediated silencing remain poorly understood, both at the level of RNA sequence determinants and interacting factors. Here, we describe analysis of a novel targeted mutation, Xist(INV), designed to test the function of a conserved region located in exon 1 of Xist RNA during X inactivation in mouse. We show that Xist(INV) is a strong hypomorphic allele that is appropriately regulated but compromised in its ability to silence X-linked loci in cis. Inheritance of Xist(INV) on the paternal X chromosome results in embryonic lethality due to failure of imprinted X inactivation in extra-embryonic lineages. Female embryos inheriting Xist(INV) on the maternal X chromosome undergo extreme secondary non-random X inactivation, eliminating the majority of cells that express the Xist(INV) allele. Analysis of cells that express Xist(INV) RNA demonstrates reduced association of the mutant RNA to the X chromosome, suggesting that conserved sequences in the inverted region are important for Xist RNA localisation.  相似文献   
95.
This work evaluates the ability of an ionic liquid‐methanol cosolvent system to extract lipids and recycle fermentable sugars recovered from oil‐bearing Rhodosporidium toruloides grown in batch culture on defined media using glucose and xylose as carbon sources. Growth on the recycled mixed carbon substrate was successful with glucose consumed before xylose and overall cell mass to lipid yields (YP/X) between 57% and 61% (w/w relative to whole dried cell mass) achieved. Enzymatic hydrolysis of the delipified carbohydrate fraction recovered approximately 9%–11% (w/w) of the whole dried cell mass as fermentable sugars, which were successfully recycled as carbon sources without further purification. In total, up to 70% (w/w) of the whole dried cell mass was recovered as lipids and fermentable sugars and the substrate to lipid yields (YP/S) was increased from 0.12 to 0.16 g lipid/g carbohydrate consumed, highlighting the promise of this approach to process lipid bearing cell biomass. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1239–1242, 2014  相似文献   
96.
Next‐generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either ‘Landraces’ or ‘Wild and Weedy’ genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP‐glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well‐characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.  相似文献   
97.
We present the one‐inflated zero‐truncated negative binomial (OIZTNB) model, and propose its use as the truncated count distribution in Horvitz–Thompson estimation of an unknown population size. In the presence of unobserved heterogeneity, the zero‐truncated negative binomial (ZTNB) model is a natural choice over the positive Poisson (PP) model; however, when one‐inflation is present the ZTNB model either suffers from a boundary problem, or provides extremely biased population size estimates. Monte Carlo evidence suggests that in the presence of one‐inflation, the Horvitz–Thompson estimator under the ZTNB model can converge in probability to infinity. The OIZTNB model gives markedly different population size estimates compared to some existing truncated count distributions, when applied to several capture–recapture data that exhibit both one‐inflation and unobserved heterogeneity.  相似文献   
98.
Several members of the synaptotagmin (syt) family of vesicle proteins have been proposed to act as Ca2+ sensors on synaptic vesicles. The mechanism by which calcium activates this class of proteins has been the subject of controversy, yet relatively few detailed biophysical studies have been reported on how isoforms other than syt I respond to divalent metal ions. Here, we report a series of studies on the response of syt II to a wide range of metal ions. Analytical ultracentrifugation studies demonstrate that Ca2+ induces protein dimerization upon exposure to 5 mM Ca2+. Whereas Ba2+, Mg2+, or Sr2+ do not potentiate self-association as strongly as Ca2+, Pb2+ triggers self-association of syt II at concentrations as low as 10 microM. Partial proteolysis studies suggest that the various divalent metals cause different changes in the conformation of the protein. The high calcium concentrations required for self-association of syt II suggest that the oligomerized state of this protein is not a critical intermediate in vesicle fusion; however, low-affinity calcium sites on syt II may play a critical role in buffering calcium at the presynaptic active zone. In addition, the high propensity of lead to oligomerize syt II offers a possible molecular explanation for how lead interferes with calcium-evoked neurotransmitter release.  相似文献   
99.
Occupations demanding frequent and heavy lifting are associated with an increased risk of injury. A personal lift assist device (PLAD) was designed to assist human muscles through the use of elastic elements. This study was designed to determine if the PLAD could reduce the level of general and local back muscle fatigue during a cyclical lifting task. Electromyography of two erector spinae sites (T9 and L3) was recorded during a 45-min lifting session at six lifts/lowers per minute in which male participants (n = 10) lifted a box scaled to represent 20% of their maximum back extensor strength. The PLAD device reduced the severity of muscular fatigue at both muscle sites. RMS amplitude increased minimally (22% and 26%) compared to the no-PLAD condition (104% and 88%). Minimal median frequency decreases (0.33% and 0.41%) were observed in the PLAD condition compared to drops of 12% and 20% in the no-PLAD condition. The PLAD had an additional benefit of minimizing pre–post changes in muscular strength and endurance. The PLAD also resulted in a significantly lower rate of perceived exertion across the lifting session. It was concluded that the PLAD was effective at decreasing the level of back muscular fatigue.  相似文献   
100.
Accumulation of genetic and epigenetic aberrations leads to malignant transformation of normal cells. Functional studies of cancer using genomic and proteomic tools will help to reveal the true complexity of the processes leading to cancer development in humans. Until recently, diagnosis and prognosis of cancer was based on conventional pathologic criteria and epidemiological evidence. Certain tumors were divided only into relatively broad histological and morphological subcategories. Rapidly developing methods of differential gene expression analysis promote the search for clinically relevant genes changing their expression levels during malignant transformation. DNA microarrays offer a unique possibility to rapidly assess the global expression picture of thousands genes in any given time point and compare the detailed combinatory analysis results of global expression profiles for normal and malignant cells at various functional stages or separate experimental conditions. Acquisition of such "genetic portraits" allows searching for regularity and difference in expression patterns of certain genes, understanding their function and pathological importance, and ultimately developing the "molecular nosology" of cancer. This review describes the basis of DNA microarray technology and methodology, and focuses on their applications in molecular classification of tumors, drug sensitivity and resistance studies, and identification of biological markers of cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号