首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12560篇
  免费   936篇
  国内免费   6篇
  2022年   54篇
  2021年   112篇
  2020年   70篇
  2019年   110篇
  2018年   120篇
  2017年   151篇
  2016年   208篇
  2015年   268篇
  2014年   364篇
  2013年   695篇
  2012年   601篇
  2011年   610篇
  2010年   400篇
  2009年   374篇
  2008年   602篇
  2007年   594篇
  2006年   539篇
  2005年   540篇
  2004年   538篇
  2003年   550篇
  2002年   498篇
  2001年   476篇
  2000年   495篇
  1999年   389篇
  1998年   152篇
  1997年   149篇
  1996年   122篇
  1995年   132篇
  1994年   123篇
  1993年   106篇
  1992年   299篇
  1991年   260篇
  1990年   255篇
  1989年   247篇
  1988年   252篇
  1987年   205篇
  1986年   213篇
  1985年   187篇
  1984年   129篇
  1983年   148篇
  1982年   119篇
  1981年   83篇
  1980年   80篇
  1979年   138篇
  1978年   79篇
  1977年   77篇
  1975年   60篇
  1973年   65篇
  1972年   58篇
  1970年   52篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Neither the overall differences in ovariole number nor the caste-specifically modulated expression of vitellogenin can fully explain the striking caste differences in honey bee reproduction, in particular the mechanisms that block oogenesis in virgin queens and in workers kept in the presence of a queen. For this reason we investigated the initial stages of oogenesis in queens in relation to mating status and in workers exposed to different social conditions. A striking feature in ovarioles of both castes was a considerably elongated terminal filament which consisted not only of normal terminal filament cells but also contained apparently undifferentiated cells that were tentatively considered as stem cells. BrdU incorporation was detected in the upper germarium, as well as in the terminal filament. Cytoskeleton analysis by TRITC-phalloidin labeling for F-actin, and immunofluorescence detection for β-tubulin did not reveal structural differences in the early oogenesis steps between queens and queenless workers. In contrast, queenright workers showed signs of a disorganized microtubule and microfilament system that could explain the histological evidence for progressive cell death observed in the germaria. In addition to cytoplasmic tubulin we also detected marked intranuclear foci indicating the presence of nuclear βII-tubulin.  相似文献   
942.
The development of synthetic biodegradable polymers, such as poly(alpha-hydroxy acid), is particularly important for constructing medical devices, including scaffolds and sutures, and has attracted growing interest in the biomedical field. Here, we report a novel approach to preparing high molecular weight poly(malic acid) (HMW--PMA) as a biodegradable and bioabsorbable water-soluble polymer. We investigated in detail the reaction conditions for the simple direct polycondensation of l-malic acid, including the reaction times, temperatures, and catalysts. The molecular weight of synthesized alpha,beta-PMA is dependent on both the reaction temperature and time. The optimum reaction condition to obtain alpha,beta-PMA by direct polycondensation using tin(II) chloride as a catalyst was thus determined to be 110 degrees C for 45 h with a molecular weight of 5300. The method for alpha,beta-PMA synthesis established here will facilitate production of alpha,beta-PMA of various molecular weights, which may have a potential utility as biomaterials.  相似文献   
943.
Adhesion behavior of cells to the surface of physical hydrogel membranes prepared by water-induced self-organization of precisely synthesized ABA-triblock copolymers comprised of poly(beta-benzyl L-aspartate) (PBLA) as A segment and poly(ethylene oxide) (PEO, molecular weight = 20 000) as the B segment were investigated. The cast film from the methylenechloride solution of these copolymers swelled in water very rapidly forming hydrogels (100-400% water content of total weight). The content of PBLA affected the strength, the hydrophobicity, and the amount of water involved in the hydrogel surface. During the early stage of cultivation with murine peritoneal cells, cell adhesion on the hydrogels of PEO and PBLA with 18 (20K18) and 25 (20K25) monomeric units was not observed, while adhesion on the hydrogels of PEO and PBLA with 32 (20K32) and 55 (20K55) monomeric units was successful, suggesting more than 12 mol % in PBLA content is necessary for adhesion of these cells. Although cell spreading on the hydrogels of 20K18, 20K25, and 20K32 was not sufficient, the hydrogel of 20K55 allowed cell adhesion and spreading to be bipolar with leading edge whose raffling is active with pseudopodium and lamellipodium as well as PBLA homopolymer, suggesting active motility of these cells. Remarkably, prolonged incubation restored adhesiveness onto the films at 20K18 in contrast to adhesion with 20K25 despite low hydrophobicity. It is conceivable that adaptation of proteins and chemical changes to the surface during the culture period may participate in these phenomena. Mechanical properties and interaction between cell and these copolymer hydrogels could be controlled by composition of block segments, and optimization for implants could also be attainable.  相似文献   
944.
The ability to restrict gene expression or disruption to specific regions of the brain would enhance understanding of the molecular basis for brain development and function. For this purpose, brain region-restricted promoters are essential. Here we report the isolation of a DNA fragment containing the Emx1 gene promoter, which is responsible for dorsal telencephalon-specific expression. The Cre recombinase gene was inserted into a mouse PAC (P1-derived artificial chromosome) Emx1-locus clone (PAC-Emx1#1 clone) and utilized to generate three transgenic mouse lines. In all three lines, especially Tg3, Cre-mediated recombination was highly restricted to Emx1-expressing cell lineages, from embryonic stages to adulthood. Immunohistochemical analyses showed that Cre protein is expressed in the dorsal telencephalon in all three lines in adulthood. Thus, the PAC-Emx1#1 clone contains essentially all regulatory elements necessary for Emx1 gene expression. Our results suggest that Emx1-Cre Tg3 mice and the PAC-Emx1#1 clone constitute powerful tools for dorsal telencephalon-specific gene manipulation.  相似文献   
945.
GCN2 is the alpha-subunit of the only translation initiation factor (eIF2alpha) kinase that appears in all eukaryotes. Its function requires an interaction with GCN1 via the domain at its N-terminus, which is termed the RWD domain after three major RWD-containing proteins: RING finger-containing proteins, WD-repeat-containing proteins, and yeast DEAD (DEXD)-like helicases. In this study, we determined the solution structure of the mouse GCN2 RWD domain using NMR spectroscopy. The structure forms an alpha + beta sandwich fold consisting of two layers: a four-stranded antiparallel beta-sheet, and three side-by-side alpha-helices, with an alphabetabetabetabetaalphaalpha topology. A characteristic YPXXXP motif, which always occurs in RWD domains, forms a stable loop including three consecutive beta-turns that overlap with each other by two residues (triple beta-turn). As putative binding sites with GCN1, a structure-based alignment allowed the identification of several surface residues in alpha-helix 3 that are characteristic of the GCN2 RWD domains. Despite the apparent absence of sequence similarity, the RWD structure significantly resembles that of ubiquitin-conjugating enzymes (E2s), with most of the structural differences in the region connecting beta-strand 4 and alpha-helix 3. The structural architecture, including the triple beta-turn, is fundamentally common among various RWD domains and E2s, but most of the surface residues on the structure vary. Thus, it appears that the RWD domain is a novel structural domain for protein-binding that plays specific roles in individual RWD-containing proteins.  相似文献   
946.
Novel nonsteroidal C(17,20)-lyase inhibitors were synthesized using de novo design based on its substrate, 17 alpha-hydroxypregnenolone, and several compounds exhibited potent C(17,20)-lyase inhibition. However, in vivo activities were found to be short-lasting, and in order to improve the duration of action, a series of benzothiophene derivatives were evaluated. As a result, compounds 9h, (S)-9i, and 9k with nanomolar enzyme inhibition (IC(50)=4-9 nM) and 9e (IC(50)=27 nM) were identified to have powerful in vivo efficacy with extended duration of action. The key structural determinants for the in vivo efficacy were demonstrated to be the 5-fluoro group on the benzothiophene ring and the 4-imidazolyl moiety. Superimposition of 9k and 17 alpha-hydroxypregnenolone demonstrated their structural similarity and enabled rationalization of the pharmacological results. In addition, selected compounds were also identified to be potent inhibitors of human enzyme with IC(50) values of 20-30 nM.  相似文献   
947.
Tubulin and actin often bind nonspecifically to affinity chromatography resins, complicating research toward identifying the cellular targets. Reduction of nonspecific binding proteins is important for success in finding such targets. We herein disclose the design, synthesis, and effectiveness in reduction of nonspecific binding proteins, of novel hydrophilic spacers (2-5), which were introduced between matrices and a ligand. Among them, tartaric acid derivative (5) exhibited the most effective reduction of nonspecific binding proteins, whilst maintaining binding of the target protein. Introduction of 5 on TOYOPEARL reduced tubulin and actin by almost 65% and 90% compared to that without the hydrophilic spacer, respectively, with effective binding to the target protein, FKBP12.  相似文献   
948.
Specific peptidyl linkers that result in the heterodimerization of functional proteins, which is catalyzed by microbial transglutaminase from Streptomyces mobaraensis (MTG), were generated based on a ribonuclease S-peptide using site-directed mutagenesis. The peptidyl linkers designated as Lys-tag and Gln-tag were designed to possess sole reactive Lys or Gln residue that was amenable for selective Lys-Gln cross-linkage of different proteins. Green fluorescent protein variants, ECFP and EYFP, were employed as model proteins, and those Lys- and Gln-tags were fused to the N-termini of ECFP and EYFP, respectively. As a result, we succeeded in solely obtaining the ECFP-EYFP heterodimer without forming multiply cross-linked byproducts. It was found that the reactivity of peptidyl linkers varied according to the type of amino acid to be replaced. Peptidyl linkers with a basic amino acid (Arg) exhibited the highest reactivity in the cross-linking reaction, suggesting the cationic residue substrate preference of MTG. Kinetic analysis utilizing fluorescent resonance energy transfer (FRET), that is only observed upon the heterodimeric ECFP-EYFP conjugation, revealed that the amino acid replacement contributed to the acceleration of cross-linking reactions by increasing catalytic turnover (k(cat)), rather than substrate binding affinity (K(m)). Finally, using a ribonuclease S-protein, the manipulation of enzymatic protein cross-linking based on specific S-peptide:S-protein interactions was explored. Since newly designed Lys- and Gln-tags retained binding affinities to the S-protein, the heterodimerization was perfectly restrained by wrapping them with the S-protein. The results suggest the possibility of limited protein conjugation by tuning steric hindrance against the MTG. Tailoring enzymatic posttranslational modifications with either engineering peptidyl substrates or by taking specific peptide-protein interactions into consideration may facilitate the development of a new sequential protein conjugation method for the preparation of multifunctional protein.  相似文献   
949.
We previously reported that liposomes having differential lipid components displayed differential adjuvant effects when antigen was coupled with liposomes via glutaraldehyde. In the present study, antigen-liposome conjugates prepared using liposomes having differential lipid components were added to the macrophage culture, and phagocytosis and the antigen digest of liposome-coupled antigen by macrophages were then investigated. Antigen presentation by macrophages to an antigen-specific T-cell clone was further investigated using the same conjugates. Antigen-liposome conjugates which induced higher levels of antibody production in vivo were recognized more often, and the liposome-coupled antigen was digested to a greater degree by macrophages than antigen-liposome conjugates which induced lower levels of antibody production. These results correlated closely with those regarding antigen presentation by macrophages; when antigen was coupled to liposomes showing higher adjuvant effect, macrophages cocultured with antigen-liposome conjugates activated antigen-specific T-cells at a higher degree. The concentration of OVA in the macrophage culture added as antigen-liposome conjugates was approximately 32 microg/mL. However, the extent of T-cell activation was almost equal to that when 800 microg/mL of soluble OVA was added to the culture. The results of the present study demonstrated that the adjuvant activity of liposomes observed primary in vivo correlated closely with the recognition of antigen-liposome conjugates and antigen presentation of liposome-coupled antigen by macrophages, suggesting that the adjuvant effects of liposomes are exerted at the beginning of the immune response, i.e., recognition of antigen by antigen-presenting cells.  相似文献   
950.
Achondroplasia is the most common genetic form of human dwarfism, for which there is presently no effective therapy. C-type natriuretic peptide (CNP) is a newly identified molecule that regulates endochondral bone growth through GC-B, a subtype of particulate guanylyl cyclase. Here we show that targeted overexpression of CNP in chondrocytes counteracts dwarfism in a mouse model of achondroplasia with activated fibroblast growth factor receptor 3 (FGFR-3) in the cartilage. CNP prevented the shortening of achondroplastic bones by correcting the decreased extracellular matrix synthesis in the growth plate through inhibition of the MAPK pathway of FGF signaling. CNP had no effect on the STAT-1 pathway of FGF signaling that mediates the decreased proliferation and the delayed differentiation of achondroplastic chondrocytes. These results demonstrate that activation of the CNP-GC-B system in endochondral bone formation constitutes a new therapeutic strategy for human achondroplasia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号