首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   1篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2013年   2篇
  2012年   7篇
  2011年   6篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2004年   4篇
  2002年   6篇
  2001年   5篇
  2000年   11篇
  1999年   2篇
  1998年   2篇
  1989年   2篇
  1987年   2篇
  1985年   1篇
  1980年   2篇
  1965年   1篇
排序方式: 共有68条查询结果,搜索用时 46 毫秒
31.
32.
33.
In most cases, advanced stages of melanoma are practically incurable due to high metastatic potential of tumor cells. Multiple observations support the idea that aberrations in Wnt signaling pathway play a significant role in melanoma development and progression. Canonical Wnt signaling activation results in stabilization and accumulation of the major effector molecule called beta-catenin. Mutations promoting beta-catenin stabilization and, thereby, activation of canonical Wnt signaling pathway are frequently found in different cancers, but rarely observed in melanomas. Nevertheless, beta-catenin nuclear and cytoplasmic accumulation is the feature of many human melanoma cell lines and original tumors. That is why, the aim of the investigation was to elucidate the relation between beta-catenin intracellular localization and activity status of Wnt signaling pathway in human melanoma cell lines. Ten human melanoma cell lines were characterized on the basis of the following parameters: canonical Wnt ligand expression, intracellular beta-catenin localization, and activity status of canonical Wnt signaling pathway. Here, it has been demonstrated that nuclear localization of beta-catenin does not always correspond to active status canonical Wnt signaling pathway. Moreover, in the majority of cell lines with nuclear beta-catenin canonical Wnt signaling can't be activated by exogenous expression of an appropriate ligand. Human melanoma cell lines differ in activity of canonical Wnt signaling pathway as well as in mechanisms of its regulation. Therefore, the pathway-targeted potential antineoplastic therapy requires the formation of a "molecular pattern of cancer" for localization of the defect in Wnt signaling cascade in the each case.  相似文献   
34.
Some mechanisms of the antitumor action of the protein Tag7 have been considered, and three scenarios of the manifestation of cytotoxic effects during the formation of its complex with other proteins have been considered.  相似文献   
35.
36.
The catalytic monoclonal antibody 9A8 (MA 9A8), antiidiotypic to the antibody AE-2 (MA AE2) produced to the active site of acetyl cholinesterase from human erythrocytes, was subjected to a structure–function study. The specific binding of MA 9A8 to MA AE2 (K 2.26 × 109 M–1) was found by the method of surface plasmon resonance, and the functional activity of MA 9A8 was demonstrated. Unlike acetyl cholinesterase, this antibody specifically reacted with the irreversible phosphonate inhibitors of esterases. A peptide map of MA 9A8 was analyzed by MALDI mass spectrometry. The Ser99 residue of its heavy chain was shown to be within the active site of the catalytic antibody. A computer modeling of the MA 9A8 active site suggested the existence of a catalytic dyad formed by Ser99 and His35. A comparison of the tertiary structures of the MA 9A8 and the 17E8 monoclonal antibody, which also exhibited the esterase activity and was produced to the stable analogue of the reaction transition state, indicated a practically complete coincidence of the structures of their presumed active sites.  相似文献   
37.
38.
39.
The peptidoglycan recognition protein Tag7 is shown to form a stable 1:1 complex with the major stress protein Hsp70. Neither protein is cytotoxic by itself, but their complex induces apoptotic death in several tumor-derived cell lines even at subnanomolar concentrations. The minimal part of Hsp70 needed to evoke cytotoxicity is residues 450-463 of its peptide-binding domain, but full cytotoxicity requires its ATPase activity; remarkably, Tag7 liberated from the complex at high ATP is not cytotoxic. The Tag7-Hsp70 complex is produced by tag7-transfected cells and by lymphokine-activated killers, being assembled within the cell and released into the medium through the Golgi apparatus by a mechanism different from the commonly known granule exocytosis. Thus, we demonstrate how a heat shock protein may perform functions clearly distinct from chaperoning or cell rescue and how peptidoglycan recognition proteins may be involved in innate immunity and anti-cancer defense.  相似文献   
40.
Cyclooxygenases (COXs) catalyze the rate-limiting step in the production of prostaglandins, bioactive compounds involved in processes such as fever and sensitivity to pain, and are the target of aspirin-like drugs. COX genes have been cloned from coral, tunicates and vertebrates, and in all the phyla where they are found, there are two genes encoding two COX isoenzymes; it is unclear whether these genes arose from an early single duplication event or from multiple independent duplications in evolution. The intron-exon arrangement of COX genes is completely conserved in vertebrates and mostly conserved in all species. Exon boundaries largely define the four functional domains of the encoded protein: the amino-terminal hydrophobic signal peptide, the dimerization domain, the membrane-binding domain, and the catalytic domain. The catalytic domain of each enzyme contains distinct peroxidase and cyclooxygenase active sites; COXs are classified as members of the myeloperoxidase family. All COXs are homodimers and monotopic membrane proteins (inserted into only one leaflet of the membrane), and they appear to be targeted to the lumenal membrane of the endoplasmic reticulum, where they are N-glycosylated. In mammals, the two COX genes encode a constitutive isoenzyme (COX-1) and an inducible isoenzyme (COX-2); both are of significant pharmacological importance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号