首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
  2017年   1篇
  2013年   3篇
  2012年   3篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   6篇
  2004年   4篇
  2003年   1篇
  2002年   5篇
  1996年   1篇
排序方式: 共有38条查询结果,搜索用时 31 毫秒
21.
Cytochrome P450 158A2 (CYP158A2) can polymerize flaviolin to red-brown pigments, which may afford physical protection to the organism, possibly against the deleterious effects of UV radiation. We have found that the small molecule malonic acid enables cocrystallization of this mixed function oxidase with the azole inhibitor 4-phenylimidazole. The presence of malonate molecules affects the behavior of the binding of 4-phenylimidazole to CYP158A2 and increases inhibition potency up to 2-fold compared to 4-phenylimidazole alone. We report here the crystal structure of the 4-phenylimidazole/malonate complex of CYP158A2 at 1.5 A. Two molecules of malonate used in crystallization are found above the single inhibitor molecule in the active site. Those two molecules are linked between the BC loop and beta 1-4/beta 6-1 strands via hydrogen bond interactions to stabilize the conformational changes of the BC loop and beta strands that take place upon inhibitor binding compared to the ligand-free structure we have reported previously. 4-Phenylimidazole can launch an extensive hydrogen-bonding network in the region of the F/G helices which may stabilize the conformational changes. Our findings clearly show that two molecules of malonate assist the inhibitor 4-phenylimidazole to assume a specific location producing more inhibition in the enzyme catalytic activity.  相似文献   
22.
23.
The detailed structural basis for the cryptic nature (crypticity) of a B cell epitope harbored by an autoantigen is unknown. Because the immune system may be ignorant of the existence of such "cryptic" epitopes, their exposure could be an important feature in autoimmunity. Here we investigated the structural basis for the crypticity of the epitopes of the Goodpasture autoantigen, the alpha3alpha4alpha5 noncollagenous-1 (NC1) hexamer, a globular domain that connects two triple-helical molecules of the alpha3alpha4alpha5 collagen IV network. The NC1 hexamer occurs in two isoforms as follows: the M-isoform composed of monomer subunits in which the epitopes are accessible to autoantibodies, and the D-isoform composed of both monomer and dimer subunits in which the epitopes are cryptic. The D-isoform was characterized with respect to quaternary structure, as revealed by mass spectrometry of dimer subunits, homology modeling, and molecular dynamics simulation. The results revealed that the D-isoform contains two kinds of cross-links as follows: S-hydroxylysyl-methionine and S-lysyl-methionine cross-links, which stabilize the alpha3alpha5-heterodimers and alpha4alpha4-homodimers, respectively. Construction and analysis of a three-dimensional model of the D-isoform of the alpha3alpha4alpha5 NC1 hexamer revealed that crypticity is a consequence of the following: (a) sequestration of key residues between neighboring subunits that are stabilized by domain-swapping interactions, and (b) by cross-linking of subunits at the trimer-trimer interface, which stabilizes the structural integrity of the NC1 hexamer and protects against binding of autoantibodies. The sequestrated epitopes and cross-linked subunits represent a novel structural mechanism for conferring immune privilege at the level of quaternary structure. Perturbation of the quaternary structure may be a key factor in the etiology of Goodpasture disease.  相似文献   
24.
Ternary S-methyl-L-cysteine (SMe-l-cys) copper(II) complexes [Cu(SMe-L-cys)(B)(H(2)O)](X) (1-4), where the heterocyclic base B is 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyridoquinoxaline (dpq, 3) and dipyridophenazine (dppz, 4), and X is ClO(4)(-) (1-3) or NO(3)(-) (4), are prepared and their DNA binding and cleavage properties studied. Complexes 2 and 4 are structurally characterized by X-ray crystallography. Both the crystal structures show distorted square-pyramidal (4+1) CuN(3)O(2) coordination geometry of the complexes in which the N,O-donor S-methyl-L-cysteine and N,N-donor heterocyclic base bind at the basal plane with a water molecule as the axial ligand. In addition, the dppz structure shows the presence of a 1D-chain formed due to covalent linkage of the carboxylate oxygen atom belonging to another molecule at the elongated axial site. The crystal structures show chemically significant non-covalent interactions like hydrogen bonding involving the axial aqua ligand and pi-pi interactions between dppz ligands. The complexes display a d-d band in the range of 605-654 nm in aqueous dimethylformamide (DMF) solution (9:1 v/v). The redox active complexes show quasireversible cyclic voltammetric response near 0.1 V in DMF assignable to the Cu(II)/Cu(I) couple. The complexes show good binding affinity to calf thymus (CT) DNA giving the order: 4 (dppz)>3 (dpq)>2 (phen)>1 (bpy). The intrinsic binding constants, obtained from UV-visible spectroscopic studies, are 1.3x10(4) and 2.15 x 10(4) M(-1) for 3 and 4, respectively. Control DNA cleavage experiments using pUC19 supercoiled (SC) DNA and minor groove binder distamycin suggest major groove binding propensity for the dppz complex, while the phen and dpq complexes bind at the minor groove of DNA. Complexes 2-4 show DNA cleavage activity in dark in the presence of a reducing agent 3-mercaptopropionic acid (MPA) via a mechanistic pathway involving formation of hydroxyl radical as the reactive species. The complexes also show efficient photo-induced DNA cleavage activity on irradiation with a monochromatic UV light of 365 nm in absence of any external reagent. The cleavage efficiency follows the order: 3>4>2. The complexes exhibit significant DNA cleavage activity on irradiation with visible light of 633 nm. Control experiments show inhibition of cleavage in presence of singlet oxygen quenchers like sodium azide, histidine and enhancement of cleavage in D(2)O, suggesting formation of singlet oxygen as a reactive species in a type-II process. The photosensitizing effect of the thiomethyl group of the amino acid is evidenced from the observation of significant DNA photocleavage activity of the phen complex 2 as the phen ligand itself is not a photosensitizer.  相似文献   
25.
The impact of single dose mass drug administration of diethylcarbamazine (DEC), DEC with albendazole (ALB), and ivermectin (IVR) with albendazole, was examined on the human bancroftian filarial infections in village scale trials in south India, from a follow-up study after 2 years. The treatment arms administered with DEC alone and DEC+ALB demonstrated long-term benefits in reducing microfilaraemia significantly (P<0.05), while antigenaemia reduction was negligible. The arm with ALB+IVR did not show such reductions. Among the antigenaemic and microfilaraemic individuals, 87% became amicrofilaraemic in DEC+ALB arm, which were higher than that observed in the other 2 treatment arms. Among amicrofilaraemics (but Ag+), nearly 35% cleared of infection in DEC+ALB, while 26% and 6% in DEC alone and IVR+ALB arms, respectively. The drug combination DEC+ALB was observed to demonstrate a significant impact in reducing filarial infection even after 2 years post treatment.  相似文献   
26.
The synthesis of a tridentate ligand, N,N′-bis(2-pyridinyl)-2,6-pyridinedicarboxamide [H2L] is described together with its manganese(II), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) complexes which were characterized based on elemental analysis, conductivity measurements, spectral, magnetic and thermal studies. The IR spectral studies of all the complexes exhibit a similar feature about the ligating nature of the ligand to the metal ions and revealed that the ligand has coordinated through the nitrogens of the deprotonated amides and the central pyridine. The two pendant pyridine nitrogens in all the complexes are protonated and involved in hydrogen bonding with the oxygens of amide groups. This observation is confirmed by the single-crystal X-ray crystallographic studies of copper(II) complex. The geometry around the copper atom can be viewed as a distorted trigonal bipyramid with τ = 0.74 [structural parameter, τ = (β − α)/60; where α and β are the two basal angles in a five coordinate complex]. The electrochemical study of the copper(II) complex shows single quasi-reversible redox peak [Cu(II) ↔ Cu(I)]. The EPR spectrum of copper(II) complex exhibits rhombic pattern [g1 = 2.0276, g2 = 2.0926 and g3 = 2.18].  相似文献   
27.
This is the first report of a tetraspanin (TSP)-like molecule in the lymphatic filarial parasites. Expressed sequence tag (EST) database search for TSP like molecules in the filarial genome resulted in three significant EST hits (two partial ESTs from Brugia malayi and one full length EST from Wuchereria bancrofti). The full length gene cloned from B. malayi showed significant similarity to Caenorhabditis elegans TSP and human TSP and hence the gene was named B. malayi TSP (BmTSP). Subsequent Genbank analysis with the predicted ORF of BmTSP showed additional homologous genes reported from Schistosoma mansoni and Taenia solium parasites. Structural analyses showed that BmTSP has four transmembrane domains and other conserved domains such as CCG and two other critical cysteine residues present within the large extracellular loop similar to other reported TSPs. In addition, putative post-translational modifications such as N-glycosylation, protein kinase c phosphorylation, casein kinase II phosphorylation and N-myristoylation sites have been found in BmTSP sequence. Further, PCR analyses showed that BmTSP is differentially transcribed, with highest level of expression being present in the adult stages followed by L3 and mf stages. This study thus describes a novel TSP cloned from B. malayi, its putative functions in cuticle biogenesis and role in protective immunity.  相似文献   
28.
Tissue ablation with mid-infrared irradiation tuned to collagen vibrational modes results in minimal collateral damage. The hypothesis for this effect includes selective scission of protein molecules and excitation of surrounding water molecules, with the scission process currently favored. In this article, we describe the postablation infrared spectral decay kinetics in a model collagen-like peptide (Pro-Pro-Gly)10. We find that the decay is exponential with different decay times for other, simpler dipeptides. Furthermore, we find that collagen-like polypeptides, such as (Pro-Pro-Gly)10, show multiple decay times, indicating multiple scission locations and cross-linking to form longer chain molecules. In combination with data from high-resolution mass spectrometry, we interpret these products to result from the generation of reactive intermediates, such as free radicals, cyanate ions, and isocyanic acid, which can form cross-links and protein adducts. Our results lead to a more complete explanation of the reduced collateral damage resulting from infrared laser irradiation through a mechanism involving cross-linking in which collagen-like molecules form a network of cross-linked fibers.  相似文献   
29.
Translationally controlled tumor protein (TCTP) is often designated as a stress-related protein because of its highly regulated expression in stress conditions. Following a thermal shock, TCTP expression is highly upregulated in a variety of cells. However, at present it is not known whether this upregulation has any cell protective function similar to other heat shock proteins. In this study human TCTP (HuTCTP) and a TCTP homolog (SmTCTP) from Schistosoma mansoni were evaluated for heat shock protein-like function and molecular chaperone activity. Our results show that similar to other molecular chaperones, both human and parasite TCTPs can bind to a variety of denatured proteins and protect them from the harmful effects of thermal shock. An important observation was the ability of both HuTCTP and SmTCTP to bind to native protein and protect them from thermal denaturation. Over expression of TCTP in bacterial cells protected them from heat shock-induced death. These findings suggest that TCTP may belong to a novel small molecular weight heat shock protein.  相似文献   
30.
Collagen IV networks are present in all metazoa and underlie epithelia as a component of basement membranes. The networks are essential for tissue function and are defective in disease. They are assembled by the oligomerization of triple-helical protomers that are linked end-to-end. At the C terminus, two protomers are linked head-to-head by interactions of their trimeric noncollagenous domains, forming a hexamer structure. This linkage in the alpha1.alpha2 network is stabilized by a putative covalent Met-Lys cross-link between the trimer-trimer interface (Than, M. E., Henrich, S., Huber, R., Ries, A., Mann, K., Kuhn, K., Timpl, R., Bourenkov, G. P., Bartunik, H. D., and Bode, W. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 6607-6612) forming a nonreducible dimer that connects the hexamer. In the present study, this cross-link was further investigated by: (a) comparing the 1.5-A resolution crystal structures of the alpha1.alpha2 hexamers from bovine placenta and lens capsule basement membranes, (b) mass spectrometric analysis of monomer and nonreducible dimer subunits of placenta basement membrane hexamers, and (c) hexamer dissociation/re-association studies. The findings rule out the novel Met-Lys cross-link, as well as other covalent cross-links, but establish that the nonreducible dimer is an inherent structural feature of a subpopulation of hexamers. The dimers reflect the reinforced stabilization, by noncovalent forces, of the connection between two adjoining protomers of a network. The reinforcement extends to other types of collagen IV networks, and it underlies the cryptic nature of a B-cell epitope of the alpha3.alpha4.alpha5 hexamer, implicating the stabilization event in the etiology and pathogenesis of Goodpasture autoimmune disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号