首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   7篇
  15篇
  2021年   1篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2004年   2篇
  1984年   1篇
  1964年   1篇
排序方式: 共有15条查询结果,搜索用时 0 毫秒
11.
Estuaries provide crucial foraging resources and nursery habitat for threatened populations of anadromous salmon. As such, there has been a global undertaking to restore habitat and tidal processes in modified estuaries. The foraging capacity of these ecosystems to support various species of out‐migrating juvenile salmon can be quantified by monitoring benthic, terrestrial, and pelagic invertebrate prey communities. Here, we present notable trends in the availability of invertebrate prey at several sites within a restoring large river delta in Puget Sound, Washington, U.S.A. Three years after the system was returned to tidal influence, we observed substantial additions to amphipod, copepod, and cumacean abundances in newly accessible marsh channels (from 0 to roughly 5,000–75,000 individuals/m2). In the restoration area, terrestrial invertebrate colonization was dependent upon vegetative cover, with dipteran and hymenopteran biomass increasing 3‐fold between 1 and 3 years post‐restoration. While the overall biodiversity within the restoration area was lower than in the reference marsh, estimated biomass was comparable to or greater than that found within the other study sites. This additional prey biomass likely provided foraging benefits for juvenile Chinook, chum, and coho salmon. Primary physical drivers differed for benthic, terrestrial, and pelagic invertebrates, and these invertebrate communities are expected to respond differentially depending on organic matter exchange and vegetative colonization. Restoring estuaries may take decades to meet certain success criteria, but our study demonstrates rapid enhancements in foraging resources understood to be used for estuary‐dependent wildlife.  相似文献   
12.
13.
Genotypic characterization of Citrus tristeza virus (CTV) strains has progressed significantly, but their phenotypic expression is poorly established as CTV naturally occurs as mixed‐strain populations. A screening system for the analysis of mixed‐strain populations is required for population studies and the correlation with symptom expression. In this study, a published CTV strain‐specific detection assay was expanded and improved to facilitate detection of currently known CTV strains. Supplementary RT‐PCR assays were developed for two variant groups of the RB strain and the HA16‐5 strain, and assays for the T36 strain and generic CTV detection were improved. The value of the strain‐specific assays was shown by the ability to identify the strain components of two CTV cross‐protecting sources, GFMS35 and LMS6, used in the South African budwood certification scheme and to demonstrate the segregation of strains in budwood source trees.  相似文献   
14.
The Scutoid mutation of Drosophila melanogaster is associated with two small transpositions within region 35 of the polytene chromosome arm 2L. A number of induced revertants of Sco have been recovered and the majority of these are chromosome aberrations. The localisation of at least one breakpoint of these aberrant revertants to the proximal breakpoint of the proximal transposition of Sco, a breakpoint that juxtaposes two loci (noc and sna), normally separated by several loci is evidence that the Scutoid phenotype results from a fusion of noc and sna.  相似文献   
15.
We describe a second-generation deficiency kit for Drosophila melanogaster composed of molecularly mapped deletions on an isogenic background, covering ~77% of the Release 5.1 genome. Using a previously reported collection of FRT-bearing P-element insertions, we have generated 655 new deletions and verified a set of 209 deletion-bearing fly stocks. In addition to deletions, we demonstrate how the P elements may also be used to generate a set of custom inversions and duplications, particularly useful for balancing difficult regions of the genome carrying haplo-insufficient loci. We describe a simple computational resource that facilitates selection of appropriate elements for generating custom deletions. Finally, we provide a computational resource that facilitates selection of other mapped FRT-bearing elements that, when combined with the DrosDel collection, can theoretically generate over half a million precisely mapped deletions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号