首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5103篇
  免费   479篇
  国内免费   1篇
  2023年   30篇
  2022年   48篇
  2021年   144篇
  2020年   79篇
  2019年   100篇
  2018年   155篇
  2017年   133篇
  2016年   175篇
  2015年   231篇
  2014年   238篇
  2013年   350篇
  2012年   341篇
  2011年   408篇
  2010年   233篇
  2009年   226篇
  2008年   265篇
  2007年   256篇
  2006年   252篇
  2005年   217篇
  2004年   226篇
  2003年   219篇
  2002年   187篇
  2001年   82篇
  2000年   81篇
  1999年   76篇
  1998年   61篇
  1997年   45篇
  1996年   46篇
  1995年   42篇
  1994年   31篇
  1993年   38篇
  1992年   38篇
  1991年   50篇
  1990年   38篇
  1989年   31篇
  1988年   31篇
  1987年   26篇
  1986年   26篇
  1985年   35篇
  1984年   34篇
  1983年   31篇
  1982年   24篇
  1981年   17篇
  1980年   21篇
  1979年   19篇
  1978年   14篇
  1977年   17篇
  1976年   16篇
  1975年   19篇
  1973年   11篇
排序方式: 共有5583条查询结果,搜索用时 46 毫秒
961.

Background

IL-2 receptor (IL2R) alpha is the specific component of the high affinity IL2R system involved in the immune response and in the control of autoimmunity.

Methods and Results

Here we perform a replication and fine mapping of the IL2RA gene region analyzing 3 SNPs previously associated with multiple sclerosis (MS) and 5 SNPs associated with type 1 diabetes (T1D) in a collection of 798 MS patients and 927 matched Caucasian controls from the south of Spain. We observed association with MS in 6 of 8 SNPs. The rs1570538, at the 3′- UTR extreme of the gene, previously reported to have a weak association with MS, is replicated here (P = 0.032). The most associated T1D SNP (rs41295061) was not associated with MS in the present study. However, the rs35285258, belonging to another independent group of SNPs associated with T1D, showed the maximal association in this study but different risk allele. We replicated the association of only one (rs2104286) of the two IL2RA SNPs identified in the recently performed genome-wide association study of MS.

Conclusions

These findings confirm and extend the association of this gene with MS and reveal a genetic heterogeneity of the associated polymorphisms and risk alleles between MS and T1D suggesting different immunopathological roles of IL2RA in these two diseases.  相似文献   
962.
The retinoblastoma protein Rb is a tumor suppressor involved in cell cycle control, differentiation, and inhibition of oncogenic transformation. Besides these roles, additional functions in the control of immune response have been suggested. In the present study we investigated the consequences of loss of Rb in viral infection. Here we show that virus replication is increased by the absence of Rb, and that Rb is required for the activation of the NF-kB pathway in response to virus infection. These results reveal a novel role for tumor suppressor Rb in viral infection surveillance and further extend the concept of a link between tumor suppressors and antiviral activity.  相似文献   
963.

Background

CCR7-mediated signalling is important for dendritic cell maturation and homing to the lymph nodes. We have previously demonstrated that Jak3 participates in the signalling pathway of CCR7 in T lymphocytes.

Methodology and Principal Findings

Here, we used Jak3−/− mice to analyze the role of Jak3 in CCR7-mediated dendritic cells migration and function. First, we found no differences in the generation of DCs from Jak3−/− bone marrow progenitors, when compared to wild type cells. However, phenotypic analysis of the bone marrow derived DCs obtained from Jak3−/− mice showed reduced expression of co-stimulatory molecules compared to wild type (Jak3+/+). In addition, when we analyzed the migration of Jak3−/− and Jak3+/+ mature DCs in response to CCL19 and CCL21 chemokines, we found that the absence of Jak3 results in impaired chemotactic responses both in vitro and in vivo. Moreover, lymphocyte proliferation and contact hypersensitivity experiments showed that DC-mediated T lymphocyte activation is reduced in the absence of Jak3.

Conclusion/Significance

Altogether, our data provide strong evidence that Jak3 is important for DC maturation, migration and function, through a CCR7-mediated signalling pathway.  相似文献   
964.
Overweight/obese persons usually have an inadequate vitamin D status, a situation commonly made worse by an inadequate intake of this vitamin. For this reason, the aim of this study was to analyze dietetic and anthropometric differences in a group of young, overweight/obese Spanish women with respect to their vitamin D status. The study subjects were 66 white Spanish women (aged 20–35 years) with a BMI of 24–35 kg/m2. Dietetic, anthropometric, and biochemical data were collected. Women were divided into two groups depending on their serum vitamin D concentrations: LD (women with <90 nmol/l 25(OH)D) and HD (women with ≥90 nmol/l 25(OH)D). The intakes of vitamin D, calcium, and supplements were similar in both groups. The body weight, BMI, and waist circumference of the HD subjects were smaller than those recorded for the LD subjects (68.6 ± 4.2 kg, 26.0 ± 1.3 kg/m2, and 79.4 ± 3.4 cm compared to 76.2 ± 9.8, 28.6 ± 3.2 kg/m2, and 86.2 ± 9.3 cm, respectively; P < 0.05). The hip circumference and the waist/hip ratio were similar in both groups. A BMI of <27.7 kg/m2 (P50) was associated with serum vitamin D concentrations of ≥90 nmol/l (odds ratio = 0.1313; confidence interval: 0.0149–1.1599; P < 0.05). Overweight/obese women are at higher risk of vitamin D deficiency, largely due to excess adiposity rather than inadequate intake.  相似文献   
965.
966.
Non-covalent and covalent homo-oligomerization of membrane proteins regulates their subcellular localization and function. Here, we described a novel oligomerization mechanism affecting solute carrier family 30 member 3/zinc transporter 3 (SLC30A3/ZnT3). Oligomerization was mediated by intermolecular covalent dityrosine bonds. Using mutagenized ZnT3 expressed in PC12 cells, we identified two critical tyrosine residues necessary for dityrosine-mediated ZnT3 oligomerization. ZnT3 carrying the Y372F mutation prevented ZnT3 oligomerization, decreased ZnT3 targeting to synaptic-like microvesicles (SLMVs), and decreased resistance to zinc toxicity. Strikingly, ZnT3 harboring the Y357F mutation behaved as a “gain-of-function” mutant as it displayed increased ZnT3 oligomerization, targeting to SLMVs, and increased resistance to zinc toxicity. Single and double tyrosine ZnT3 mutants indicate that the predominant dimeric species is formed between tyrosine 357 and 372. ZnT3 tyrosine dimerization was detected under normal conditions and it was enhanced by oxidative stress. Covalent species were also detected in other SLC30A zinc transporters localized in different subcellular compartments. These results indicate that covalent tyrosine dimerization of a SLC30A family member modulates its subcellular localization and zinc transport capacity. We propose that dityrosine-dependent membrane protein oligomerization may regulate the function of diverse membrane protein in normal and disease states.  相似文献   
967.

Objectives

Household contacts (HHCs) of pulmonary tuberculosis patients are at high risk of Mycobacterium tuberculosis infection and early disease development. Identification of individuals at risk of tuberculosis disease is a desirable goal for tuberculosis control. Interferon-gamma release assays (IGRAs) using specific M. tuberculosis antigens provide an alternative to tuberculin skin testing (TST) for infection detection. Additionally, the levels of IFNγ produced in response to these antigens may have prognostic value. We estimated the prevalence of M. tuberculosis infection by IGRA and TST in HHCs and their source population (SP), and assessed whether IFNγ levels in HHCs correlate with tuberculosis development.

Methods

A cohort of 2060 HHCs was followed for 2–3 years after exposure to a tuberculosis case. Besides TST, IFNγ responses to mycobacterial antigens: CFP, CFP-10, HspX and Ag85A were assessed in 7-days whole blood cultures and compared to 766 individuals from the SP in Medellín, Colombia. Isoniazid prophylaxis was not offered to child contacts because Colombian tuberculosis regulations consider it only in children under 5 years, TST positive without BCG vaccination.

Results

Using TST 65.9% of HHCs and 42.7% subjects from the SP were positive (OR 2.60, p<0.0001). IFNγ response to CFP-10, a biomarker of M. tuberculosis infection, tested positive in 66.3% HHCs and 24.3% from the SP (OR = 6.07, p<0.0001). Tuberculosis incidence rate was 7.0/1000 person years. Children <5 years accounted for 21.6% of incident cases. No significant difference was found between positive and negative IFNγ responders to CFP-10 (HR 1.82 95% CI 0.79–4.20 p = 0.16). However, a significant trend for tuberculosis development amongst high HHC IFNγ producers was observed (trend Log rank p = 0.007).

Discussion

CFP-10-induced IFNγ production is useful to establish tuberculosis infection prevalence amongst HHC and identify those at highest risk of disease. The high tuberculosis incidence amongst children supports administration of chemoprohylaxis to child contacts regardless of BCG vaccination.  相似文献   
968.
Phytate (myo-inositol hexakisphosphate), the major form of phosphorous storage in plant seeds, is an inositol phosphate compound poorly digested by humans and monogastric animals. A major goal for grain crop improvement is the reduction of its content in the seed to improve micronutrient bioavailability and phosphorus utilisation by humans and non-ruminant animals, respectively. We are interested in lowering phytic acid in common bean seed and to this goal we have undertaken a two-strategy approach: the isolation of mutants from an EMS mutagenised population (Campion et al. 2009) and the identification of genes coding for candidate enzymes involved in inositol phosphate metabolism for future targeted mutant isolation and/or study. In this paper we report data referred to the second approach and concerning the isolation and genomic organisation of Phaseolus vulgaris genes coding for myo-inositol 1-phosphate synthase (PvMIPSs and PvMIPSv), inositol monophosphatase (PvIMP), myo-inositol kinase (PvMIK), inositol 1,4,5-tris-phosphate kinase (PvIPK2), inositol 1,3,4-triphosphate 5/6-kinase (PvITPKα and PvITPKβ) and inositol 1,3,4,5,6 pentakisphosphate 2-kinase (PvIPK1). All these genes have been mapped on the common bean reference genetic map of McClean (NDSU) 2007 using a virtual mapping strategy. Bean markers, presumably associated to each gene of the phytic acid pathway, have also been identified. In addition, we provide a picture of the expression, during seed development, of the genes involved in phytic acid synthesis, including those such as MIK, IMP and IPK2, for which this information was lacking.  相似文献   
969.
Pectinlyase, present in different commercial pectinases used in juice technology, was immobilized on alginate beads. The optimal conditions were: 0.17 g alginate ml(-1), 1.2% (w/v or v/v) enzyme concentration and acetic-HCl/glycine-HCl buffer at pH 3.6 or tris-HCl/imidazole buffer at pH 6.4. Maximum percentage of immobilization (10.6%) was obtained with Rapidase C80. Kinetic parameters of free and immobilized pectinlyase were also determined. The pH and temperature at which activity of soluble and immobilized enzyme was maximum were 7.2 and 55 degrees C. Thermal stability was not significantly altered by immobilization, especially at 40 degrees C, showing two periods of different stability. Free and immobilized preparation reduced the viscosity of highly esterified pectin from 1.09 to 0.70 and 0.72 mm(2) s(-1), respectively, after 30 min at 40 degrees C. Furthermore, the immobilized enzyme could be re-used through 4 cycles and the efficiency loss in viscosity reduction was found to be only 9.2%.  相似文献   
970.
New directions in biology are being driven by the complete sequencing of genomes, which has given us the protein repertoires of diverse organisms from all kingdoms of life. In tandem with this accumulation of sequence data, worldwide structural genomics initiatives, advanced by the development of improved technologies in X-ray crystallography and NMR, are expanding our knowledge of structural families and increasing our fold libraries. Methods for detecting remote sequence similarities have also been made more sensitive and this means that we can map domains from these structural families onto genome sequences to understand how these families are distributed throughout the genomes and reveal how they might influence the functional repertoires and biological complexities of the organisms. We have used robust protocols to assign sequences from completed genomes to domain structures in the CATH database, allowing up to 60% of domain sequences in these genomes, depending on the organism, to be assigned to a domain family of known structure. Analysis of the distribution of these families throughout bacterial genomes identified more than 300 universal families, some of which had expanded significantly in proportion to genome size. These highly expanded families are primarily involved in metabolism and regulation and appear to make major contributions to the functional repertoire and complexity of bacterial organisms. When comparisons are made across all kingdoms of life, we find a smaller set of universal domain families (approx. 140), of which families involved in protein biosynthesis are the largest conserved component. Analysis of the behaviour of other families reveals that some (e.g. those involved in metabolism, regulation) have remained highly innovative during evolution, making it harder to trace their evolutionary ancestry. Structural analyses of metabolic families provide some insights into the mechanisms of functional innovation, which include changes in domain partnerships and significant structural embellishments leading to modulation of active sites and protein interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号