首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5127篇
  免费   480篇
  国内免费   1篇
  5608篇
  2023年   31篇
  2022年   72篇
  2021年   144篇
  2020年   79篇
  2019年   100篇
  2018年   155篇
  2017年   133篇
  2016年   175篇
  2015年   231篇
  2014年   238篇
  2013年   350篇
  2012年   341篇
  2011年   408篇
  2010年   233篇
  2009年   226篇
  2008年   265篇
  2007年   256篇
  2006年   252篇
  2005年   217篇
  2004年   226篇
  2003年   219篇
  2002年   187篇
  2001年   82篇
  2000年   81篇
  1999年   76篇
  1998年   61篇
  1997年   45篇
  1996年   46篇
  1995年   42篇
  1994年   31篇
  1993年   38篇
  1992年   38篇
  1991年   50篇
  1990年   38篇
  1989年   31篇
  1988年   31篇
  1987年   26篇
  1986年   26篇
  1985年   35篇
  1984年   34篇
  1983年   31篇
  1982年   24篇
  1981年   17篇
  1980年   21篇
  1979年   19篇
  1978年   14篇
  1977年   17篇
  1976年   16篇
  1975年   19篇
  1973年   11篇
排序方式: 共有5608条查询结果,搜索用时 0 毫秒
931.
Perillyl alcohol (POH) is a naturally occurring terpene and a promising chemotherapeutic agent for glioblastoma multiform; yet, little is known about its molecular effects. Here we present results of a semi-quantitative proteomic analysis of A172 cells exposed to POH for different time-periods (1′, 10′, 30′, 60′, 4 h, and 24 h). The analysis identified more than 4000 proteins; which were clustered using PatternLab for proteomics and then linked to Ras signaling, tissue homeostasis, induction of apoptosis, metallopeptidase activity, and ubiquitin-protein ligase activity. Our results make available one of the most complete protein repositories for the A172. Moreover, we detected the phosphorylation of GSK3β (Glycogen synthase kinase) and the inhibition of ERK's (extracellular signal regulated kinase) phosphorylation after 10′, which suggests a new mechanism of POH's activation for apoptosis.  相似文献   
932.

Background

Potential regulators of adipogenesis include microRNAs (miRNAs), small non-coding RNAs that have been recently shown related to adiposity and differentially expressed in fat depots. However, to date no study is available, to our knowledge, regarding miRNAs expression profile during human adipogenesis. Thereby, the aim of this study was to investigate whether miRNA pattern in human fat cells and subcutaneous adipose tissue is associated to obesity and co-morbidities and whether miRNA expression profile in adipocytes is linked to adipogenesis.

Methodology/Principal Findings

We performed a global miRNA expression microarray of 723 human and 76 viral mature miRNAs in human adipocytes during differentiation and in subcutaneous fat samples from non-obese (n = 6) and obese with (n = 9) and without (n = 13) Type-2 Diabetes Mellitus (DM-2) women. Changes in adipogenesis-related miRNAs were then validated by RT-PCR. Fifty of 799 miRNAs (6.2%) significantly differed between fat cells from lean and obese subjects. Seventy miRNAs (8.8%) were highly and significantly up or down-regulated in mature adipocytes as compared to pre-adipocytes. Otherwise, 17 of these 799 miRNAs (2.1%) were correlated with anthropometrical (BMI) and/or metabolic (fasting glucose and/or triglycerides) parameters. We identified 11 miRNAs (1.4%) significantly deregulated in subcutaneous fat from obese subjects with and without DM-2. Interestingly, most of these changes were associated with miRNAs also significantly deregulated during adipocyte differentiation.

Conclusions/Significance

The remarkable inverse miRNA profile revealed for human pre-adipocytes and mature adipocytes hints at a closely crosstalk between miRNAs and adipogenesis. Such candidates may represent biomarkers and therapeutic targets for obesity and obesity-related complications.  相似文献   
933.

Background

Prostate cancer recurrence involves increased growth of cancer epithelial cells, as androgen dependent prostate cancer progresses to castrate resistant prostate cancer (CRPC) following initial therapy. Understanding CRPC prostate regrowth will provide opportunities for new cancer therapies to treat advanced disease.

Methodology/Principal Findings

Elevated chemokine expression in the prostate stroma of a castrate resistant mouse model, Tgfbr2fspKO, prompted us to look at the involvement of bone marrow derived cells (BMDCs) in prostate regrowth. We identified bone marrow cells recruited to the prostate in GFP-chimeric mice. A dramatic increase in BMDC recruitment for prostate regrowth occurred three days after exogenous testosterone implantation. Recruitment led to incorporation of BMDCs within the prostate epithelia. Immunofluorescence staining suggested BMDCs in the prostate coexpressed androgen receptor; p63, a basal epithelial marker; and cytokeratin 8, a luminal epithelial marker. A subset of the BMDC population, mesenchymal stem cells (MSCs), were specifically found to be incorporated in the prostate at its greatest time of remodeling. Rosa26 expressing MSCs injected into GFP mice supported MSC fusion with resident prostate epithelial cells through co-localization of β-galactosidase and GFP during regrowth. In a human C4-2B xenograft model of CRPC, MSCs were specifically recruited. Injection of GFP-labeled MSCs supported C4-2B tumor progression by potentiating canonical Wnt signaling. The use of MSCs as a targeted delivery vector for the exogenously expressed Wnt antagonist, secreted frizzled related protein-2 (SFRP2), reduced tumor growth, increased apoptosis and potentiated tumor necrosis.

Conclusions/Significance

Mesenchymal stem cells fuse with prostate epithelia during the process of prostate regrowth. MSCs recruited to the regrowing prostate can be used as a vehicle for transporting genetic information with potential therapeutic effects on castrate resistant prostate cancer, for instance by antagonizing Wnt signaling through SFRP2.  相似文献   
934.

Background

Parkinson''s disease (PD) is a progressive neurodegenerative disorder characterized pathologically by the presence in the brain of intracellular protein inclusions highly enriched in aggregated alpha-synuclein (α-Syn). Although it has been established that progression of the disease is accompanied by sustained activation of microglia, the underlying molecules and factors involved in these immune-triggered mechanisms remain largely unexplored. Lately, accumulating evidence has shown the presence of extracellular α-Syn both in its aggregated and monomeric forms in cerebrospinal fluid and blood plasma. However, the effect of extracellular α-Syn on cellular activation and immune mediators, as well as the impact of familial PD-linked α-Syn mutants on this stimulation, are still largely unknown.

Methods and Findings

In this work, we have compared the activation profiles of non-aggregated, extracellular wild-type and PD-linked mutant α-Syn variants on primary glial and microglial cell cultures. After stimulation of cells with α-Syn, we measured the release of Th1- and Th2- type cytokines as well as IP-10/CXCL10, RANTES/CCL5, MCP-1/CCL2 and MIP-1α/CCL3 chemokines. Contrary to what had been observed using cell lines or for the case of aggregated α-Syn, we found strong differences in the immune response generated by wild-type α-Syn and the familial PD mutants (A30P, E46K and A53T).

Conclusions

These findings might contribute to explain the differences in the onset and progression of this highly debilitating disease, which could be of value in the development of rational approaches towards effective control of immune responses that are associated with PD.  相似文献   
935.
T-cell receptor gene rearrangements were studied in Aotus monkeys developing high antibody titers and sterilizing immunity against the Plasmodium falciparum malaria parasite upon vaccination with the modified synthetic peptide 24112, which was identified in the Merozoite Surface Protein 2 (MSP-2) and is known to bind to HLA-DRβ1*0403 molecules with high capacity. Spectratyping analysis showed a preferential usage of Vβ12 and Vβ6 TCR gene families in 67% of HLA-DRβ1*0403-like genotyped monkeys. Docking of peptide 24112 into the HLA-DRβ1*0401–HA peptide–HA1.7TCR complex containing the VDJ rearrangements identified in fully protected monkeys showed a different structural signature compared to nonprotected monkeys. These striking results show the exquisite specificity of the TCR/pMHCII complex formation needed for inducing sterilizing immunity and provide important hints for a logical and rational methodology to develop multiepitopic, minimal subunit-based synthetic vaccines against infectious diseases, among them malaria.  相似文献   
936.

Background

Bartonella henselae is the zoonotic agent of cat scratch disease and causes potentially fatal infections in immunocompromised patients. Understanding the complex interactions between the host''s immune system and bacterial pathogens is central to the field of infectious diseases and to the development of effective diagnostics and vaccines.

Methodology

We report the development of a microarray comprised of proteins expressed from 96% (1433/1493) of the predicted ORFs encoded by the genome of the zoonotic pathogen Bartonella henselae. The array was probed with a collection of 62 uninfected, 62 infected, and 8 “specific-pathogen free” naïve cat sera, to profile the antibody repertoire elicited during natural Bartonella henselae infection.

Conclusions

We found that 7.3% of the B. henselae proteins on the microarray were seroreactive and that seroreactivity was not evenly distributed between predicted protein function or subcellular localization. Membrane proteins were significantly most likely to be seroreactive, although only 23% of the membrane proteins were reactive. Conversely, we found that proteins involved in amino acid transport and metabolism were significantly underrepresented and did not contain any seroreactive antigens. Of all seroreactive antigens, 52 were differentially reactive with sera from infected cats, and 53 were equally reactive with sera from infected and uninfected cats. Thirteen of the seroreactive antigens were found to be differentially seroreactive between B. henselae type I and type II. Based on these results, we developed a classifier algorithm that was capable of accurately discerning 93% of the infected animals using the microarray platform. The seroreactivity and diagnostic potential of these antigens was then validated on an immunostrip platform, which correctly identified 98% of the infected cats. Our protein microarray platform provides a high-throughput, comprehensive analysis of the feline humoral immune response to natural infection with the alpha-proteobacterium B. henselae at an antigen-specific, sera-specific, and genome-wide level. Furthermore, these results provide novel insight and utility in diagnostics, vaccine development, and understanding of host-pathogen interaction.  相似文献   
937.
The Nagoya Protocol on Access and Benefit-sharing ( https://www.cbd.int/abs/ ), primarily designed for vascular plant and animal resources, is also extended to the use of microbial resources, but its application to the microbiological realm has raised many doubts and provoked criticisms. This is because of the particularities of microbial ecology and the technical and legal difficulties encompassed in its application.  相似文献   
938.
Bacterioplankton are main drivers of biogeochemical cycles and important components of aquatic food webs. While sequencing-based studies have revealed how bacterioplankton communities are structured in time and space, relatively little is known about intraspecies diversity patterns and their ecological relevance. Here, we use the newly developed software POGENOM (POpulation GENomics from Metagenomes) to investigate genomic diversity and differentiation in metagenome-assembled genomes from the Baltic Sea, and investigate their genomic variation using metagenome data spanning a 1700 km transect and covering seasonal variation at one station. The majority of the investigated species, representing several major bacterioplankton clades, displayed population structures correlating significantly with environmental factors such as salinity and temperature. Population differentiation was more pronounced over spatial than temporal scales. We discovered genes that have undergone adaptation to different salinity regimes, potentially responsible for the populations’ existence along with the salinity range. This in turn implies the broad existence of ecotypes that may remain undetected by rRNA gene sequencing. Our findings emphasize the importance of physiological barriers, and highlight the role of adaptive divergence as a structuring mechanism of bacterioplankton species.Subject terms: Population genetics, Water microbiology  相似文献   
939.
There is an increasing interest for the role of liver enzymes as predictors of non-liver-related morbidity and mortality. The American Heart Association (AHA) described the ideal cardiovascular health concept as a score of seven cardiovascular health behaviors and factors that can be used to monitor and predict ideal cardiovascular health over time. This study aimed to examine the association of the ideal cardiovascular health (ICH), as defined by the AHA, with liver enzyme levels in European adolescents. A total of 637 adolescents (54.6% females), aged 14.6 ± 1.2 years from nine European countries participated in this cross-sectional study. Blood levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyltransferase were measured and the AST/ALT ratio calculated. Ideal cardiovascular health was defined as meeting ideal levels of the following components: four behaviors (smoking, body mass index, physical activity, and diet) and three factors (total cholesterol, blood pressure, and glucose). A higher number of ideal cardiovascular health behaviors, factors, and ideal cardiovascular health index were associated with lower ALT (P < 0.05, P < 0.001, and P < 0.001, respectively) and gamma-glutamyltransferase (P < 0.001, P < 0.01, and P < 0.001, respectively) levels. Similarly, a higher number of ideal cardiovascular health behaviors (P < 0.01), factors (P < 0.01), and ideal cardiovascular health index (P < 0.001) were associated with a higher aspartate aminotransferase to alanine aminotransferase ratio. These findings reinforce the usefulness of the ICH index as an instrument to identify target individuals and promote cardiovascular health in adolescents, and it also extends these observations to the liver manifestation of the metabolic syndrome.  相似文献   
940.
Increases in seawater temperature are expected to have negative consequences for marine organisms. Beyond individual effects, species‐specific differences in thermal tolerance are predicted to modify species interactions and increase the strength of top‐down effects, particularly in plant–herbivore interactions. Shifts in trophic interactions will be especially important when affecting habitat‐forming species such as seagrasses, as the consequences on their abundance will cascade throughout the food web. Seagrasses are a major component of coastal ecosystems offering important ecosystem services, but are threatened by multiple anthropogenic stressors, including warming. The mechanistic understanding of seagrass responses to warming at multiple scales of organization remains largely unexplored, especially in early‐life stages such as seedlings. Yet, these early‐life stages are critical for seagrass expansion processes and adaptation to climate change. In this study, we determined the effects of a 3 month experimental exposure to present and predicted mean summer SST of the Mediterranean Sea (25°C, 27°C, and 29°C) on the photophysiology, size, and ecology (i.e., plant‐herbivore interactions) of seedlings of the seagrass Posidonia oceanica. Warming resulted in increased mortality, leaf necrosis, and respiration as well as lower carbohydrate reserves in the seed, the main storage organ in seedlings. Aboveground biomass and root growth were also limited with warming, which could hamper seedling establishment success. Furthermore, warming increased the susceptibility to consumption by grazers, likely due to lower leaf fiber content and thickness. Our results indicate that warming will negatively affect seagrass seedlings through multiple direct and indirect pathways: increased stress, reduced establishment potential, lower storage of carbohydrate reserves, and increased susceptibly to consumption. This work provides a significant step forward in understanding the major mechanisms that will drive the capacity of seagrass seedlings to adapt and survive to warming, highlighting the potential additive effects that herbivory will have on ultimately determining seedling success.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号