首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2190篇
  免费   175篇
  国内免费   1篇
  2023年   12篇
  2022年   20篇
  2021年   50篇
  2020年   21篇
  2019年   23篇
  2018年   54篇
  2017年   38篇
  2016年   56篇
  2015年   98篇
  2014年   91篇
  2013年   153篇
  2012年   148篇
  2011年   183篇
  2010年   107篇
  2009年   106篇
  2008年   141篇
  2007年   113篇
  2006年   113篇
  2005年   119篇
  2004年   121篇
  2003年   112篇
  2002年   85篇
  2001年   14篇
  2000年   17篇
  1999年   22篇
  1998年   26篇
  1997年   17篇
  1996年   24篇
  1995年   21篇
  1994年   14篇
  1993年   21篇
  1992年   14篇
  1991年   11篇
  1990年   11篇
  1989年   8篇
  1988年   7篇
  1987年   12篇
  1986年   8篇
  1985年   10篇
  1984年   12篇
  1983年   14篇
  1982年   15篇
  1981年   11篇
  1980年   14篇
  1979年   14篇
  1978年   9篇
  1977年   6篇
  1976年   11篇
  1975年   7篇
  1973年   5篇
排序方式: 共有2366条查询结果,搜索用时 31 毫秒
941.
Acute injection of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) into the rat globus pallidus leads to calcium precipitation, neuronal death and gliosis. In order to determine whether L-type calcium channels and/or release of Ca(2+) from intracellular stores contribute to the effects of AMPA, nimodipine and 8-(N,N-diethylamino) octyl-3,4,5-trimethoxybenzoate hydrochloride (TMB-8) were administered in combination with AMPA. Nimodipine, but not TMB-8, tended to exacerbate the calcification process initiated by AMPA; the AMPA/nimodipine/TMB-8 combination produced much more calcium deposition than AMPA (+62%, P<0.05). AMPA alone induced a slight but not significant astroglial reaction. Nimodipine slightly enhanced the astroglial reaction triggered by AMPA, whereas TMB-8 doubled it (P<0.001 versus AMPA). These data suggest that blockade of L-type calcium channels by nimodipine enhances calcium imbalance triggered by AMPA, and the calcium release from the endoplasmic reticulum does not participate in the AMPA-induced calcification.  相似文献   
942.
Mitochondria are both targets and sources of oxidative stress. This dual relationship is particularly evident in experimental paradigms modeling ischemic brain injury. One mitochondrial metabolic enzyme that is particularly sensitive to oxidative inactivation is pyruvate dehydrogenase. This reaction is extremely important in the adult CNS that relies very heavily on carbohydrate metabolism, as it represents the sole bridge between anaerobic and aerobic metabolism. Oxidative injury to this enzyme and to other metabolic enzymes proximal to the electron transport chain may be responsible for the oxidized shift in cellular redox state that is observed during approximately the first hour of cerebral reperfusion. In addition to impairing cerebral energy metabolism, oxidative stress is a potent activator of apoptosis. The mechanisms responsible for this activation are poorly understood but likely involve the expression of p53 and possibly direct effects of reactive oxygen species on mitochondrial membrane proteins and lipids. Mitochondria also normally generate reactive oxygen species and contribute significantly to the elevated net production of these destructive agents during reperfusion. Approaches to inhibiting pathologic mitochondrial generation of reactive oxygen species include mild uncoupling, pharmacologic inhibition of the membrane permeability transition, and simply lowering the concentration of inspired oxygen. Antideath mitochondrial proteins of the Bcl-2 family also confer cellular resistance to oxidative stress, paradoxically through stimulation of mitochondrial free radical generation and secondary upregulation of antioxidant gene expression.  相似文献   
943.
944.
Real-time visualization of specific endogenous mRNA expression in vivo has the potential to revolutionize medical diagnosis, drug discovery, developmental and molecular biology. However, conventional liposome- or dendrimer-based cellular delivery of molecular probes is inefficient, slow, and often detrimental to the probes. Here we demonstrate the rapid and sensitive detection of RNA in living cells using peptide-linked molecular beacons that possess self-delivery, targeting and reporting functions. We conjugated the TAT peptide to molecular beacons using three different linkages and demonstrated that, at relatively low concentrations, these molecular beacon constructs were internalized into living cells within 30 min with nearly 100% efficiency. Further, peptide-based delivery did not interfere with either specific targeting by or hybridization-induced fluorescence of the probes. We could therefore detect human GAPDH and survivin mRNAs in living cells fluorescently, revealing intriguing intracellular localization patterns of mRNA. We clearly demonstrated that cellular delivery of molecular beacons using the peptide-based approach has far better performance compared with conventional transfection methods. The peptide-linked molecular beacons approach promises to open new and exciting opportunities in sensitive gene detection and quantification in vivo.  相似文献   
945.
The complete amino acid and nucleotide sequence of a secreted metalloprotease produced by Actinobacillus pleuropneumoniae serotype 1 is reported. A clone showing proteolytic activity in cell-free culture media was selected from a genomic library of A. pleuropneumoniae serotype 1 in pUC 19. The sequence obtained contained an open reading frame encoding a protein with 869 amino acids. This protein was identified as a zinc neutral-metalloprotease belonging to the aminopeptidase family, with a predicted molecular weight of approximately 101 kDa. This sequence showed high homology with other predicted or sequenced aminopeptidases reported for different Gram-negative bacteria. Expression of the protease was observed in lung tissue from pigs that died of porcine pleuropneumonia suggesting a role in pathogenesis.  相似文献   
946.
The way that UL42, the processivity subunit of the herpes simplex virus DNA polymerase, interacts with DNA and promotes processivity remains unclear. A positively charged face of UL42 has been proposed to participate in electrostatic interactions with DNA that would tether the polymerase to a template without preventing its translocation via DNA sliding. An alternative model proposes that DNA binding by UL42 is not important for processivity. To investigate these issues, we substituted alanine for each of four conserved arginine residues on the positively charged surface. Each single substitution decreased the DNA binding affinity of UL42, with 14- to 30-fold increases in apparent dissociation constants. The mutant proteins exhibited no meaningful change in affinity for binding to the C terminus of the catalytic subunit of the polymerase, indicating that the substitutions exert a specific effect on DNA binding. The substitutions decreased UL42-mediated long-chain DNA synthesis by the polymerase in the same rank order in which they affected DNA binding, consistent with a role for DNA binding in polymerase processivity. Combining these substitutions decreased DNA binding further and impaired the complementation of a UL42 null virus in transfected cells. Additionally, using a revised mathematical model to analyze rates of dissociation of UL42 from DNAs of various lengths, we found that dissociation from internal sites, which would be the most important for tethering the polymerase, was relatively slow, even at ionic strengths that permit processive DNA synthesis by the holoenzyme. These data provide evidence that the basic surface of UL42 interacts with DNA and support a model in which DNA binding by UL42 is important for processive DNA synthesis.  相似文献   
947.
948.
949.
950.
B cell immunotherapy has emerged as a mainstay in the treatment of lymphomas and autoimmune diseases. Although the microenvironment has recently been demonstrated to play critical roles in B cell homeostasis, its contribution to immunotherapy is unknown. To analyze the in vivo factors that regulate mechanisms involved in B cell immunotherapy, we used a murine model for human CD20 (hCD20) expression in which treatment of hCD20(+) mice with anti-hCD20 mAbs mimics B cell depletion observed in humans. We demonstrate in this study that factors derived from the microenvironment, including signals from the B cell-activating factor belonging to the TNF family/BLyS survival factor, integrin-regulated homeostasis, and circulatory dynamics of B cells define distinct in vivo mechanism(s) and sensitivities of cells in anti-hCD20 mAb-directed therapies. These findings provide new insights into the mechanisms of immunotherapy and define new opportunities in the treatment of cancers and autoimmune diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号