首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   5篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2012年   9篇
  2011年   6篇
  2010年   8篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1995年   1篇
  1992年   2篇
  1990年   1篇
  1981年   1篇
  1976年   1篇
  1970年   3篇
  1967年   1篇
  1966年   1篇
  1963年   1篇
  1931年   2篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
41.
New therapies for late stage and castration resistant prostate cancer (CRPC) depend on defining unique properties and pathways of cell sub-populations capable of sustaining the net growth of the cancer. One of the best enrichment schemes for isolating the putative stem/progenitor cell from the murine prostate gland is Lin(-);Sca1(+);CD49f(hi) (LSC(hi)), which results in a more than 10-fold enrichment for in vitro sphere-forming activity. We have shown previously that the LSC(hi) subpopulation is both necessary and sufficient for cancer initiation in the Pten-null prostate cancer model. To further improve this enrichment scheme, we searched for cell surface molecules upregulated upon castration of murine prostate and identified CD166 as a candidate gene. CD166 encodes a cell surface molecule that can further enrich sphere-forming activity of WT LSC(hi) and Pten null LSC(hi). Importantly, CD166 could enrich sphere-forming ability of benign primary human prostate cells in vitro and induce the formation of tubule-like structures in vivo. CD166 expression is upregulated in human prostate cancers, especially CRPC samples. Although genetic deletion of murine CD166 in the Pten null prostate cancer model does not interfere with sphere formation or block prostate cancer progression and CRPC development, the presence of CD166 on prostate stem/progenitors and castration resistant sub-populations suggest that it is a cell surface molecule with the potential for targeted delivery of human prostate cancer therapeutics.  相似文献   
42.
43.
The structural organization of the brain is important for normal brain function and is critical to understand in order to evaluate changes that occur during disease processes. Three-dimensional (3D) imaging of the mouse brain is necessary to appreciate the spatial context of structures within the brain. In addition, the small scale of many brain structures necessitates resolution at the ~10 μm scale. 3D optical imaging techniques, such as optical projection tomography (OPT), have the ability to image intact large specimens (1 cm(3)) with ~5 μm resolution. In this work we assessed the potential of autofluorescence optical imaging methods, and specifically OPT, for phenotyping the mouse brain. We found that both specimen size and fixation methods affected the quality of the OPT image. Based on these findings we developed a specimen preparation method to improve the images. Using this method we assessed the potential of optical imaging for phenotyping. Phenotypic differences between wild-type male and female mice were quantified using computer-automated methods. We found that optical imaging of the endogenous autofluorescence in the mouse brain allows for 3D characterization of neuroanatomy and detailed analysis of brain phenotypes. This will be a powerful tool for understanding mouse models of disease and development and is a technology that fits easily within the workflow of biology and neuroscience labs.  相似文献   
44.
Heat shock protein 27 (Hsp27) is emerging as a promising therapeutic target for treatment of various cancers. Although the role of Hsp27 in protection from stress-induced intrinsic cell death has been relatively well studied, its role in Fas (death domain containing member of the tumor necrosis factor receptor superfamily)-induced apoptosis and cell proliferation remains underappreciated. Here, we show that Hsp27 silencing induces dual coordinated effects, resulting in inhibition of cell proliferation and sensitization of cells to Fas-induced apoptosis through regulation of PEA-15 (15-kDa phospho-enriched protein in astrocytes). We demonstrate that Hsp27 silencing suppresses proliferation by causing PEA-15 to bind and sequester extracellular signal-regulated kinase (ERK), resulting in reduced translocation of ERK to the nucleus. Concurrently, Hsp27 silencing promotes Fas-induced apoptosis by inducing PEA-15 to release Fas-associating protein with a novel death domain (FADD), thus allowing FADD to participate in death receptor signaling. Conversely, Hsp27 overexpression promotes cell proliferation and suppresses Fas-induced apoptosis. Furthermore, we show that Hsp27 regulation of PEA-15 activity occurs in an Akt-dependent manner. Significantly, Hsp27 silencing in a panel of phosphatase and tensin homolog on chromosome 10 (PTEN) wild-type or null cell lines, and in LNCaP cells that inducibly express PTEN, resulted in selective growth inhibition of PTEN-deficient cancer cells. These data identify a dual coordinated role of Hsp27 in cell proliferation and Fas-induced apoptosis via Akt and PEA-15, and indicate that improved clinical responses to Hsp27-targeted therapy may be achieved by stratifying patient populations based on tumor PTEN expression.  相似文献   
45.
46.
In castration-resistant prostate cancer (CRPC) many androgen-regulated genes become re-expressed and tissue androgen levels increase despite low serum levels. We and others have recently reported that CRPC tumor cells can de novo synthesize androgens from adrenal steroid precursors or cholesterol and that high levels of progesterone exist in LNCaP tumors after castration serving perhaps as an intermediate in androgen synthesis.Herein, we compare androgen synthesis from [3H-progesterone] in the presence of specific steroidogenesis inhibitors and anti-androgens in steroid starved LNCaP cells and CRPC tumors. Similarly, we compare steroid profiles in LNCaP tumors at different stages of CRPC progression.Steroidogenesis inhibitors targeting CYP17A1 and SRD5A2 significantly altered but did not eliminate androgen synthesis from progesterone in steroid starved LNCaP cells and CRPC tumors. Upon exposure to inhibitors of steroidogenesis prostate cancer cells adapt gradually during CRPC progression to synthesize DHT in a compensatory manner through alternative feed-forward mechanisms. Furthermore, tumors obtained immediately after castration are significantly less efficient at metabolizing progesterone (36%) and produce a different steroid profile to CRPC tumors. Optimal targeting of the androgen axis may be most effective when tumors are least efficient at synthesizing androgens. Confirmatory studies in humans are required to validate these findings.  相似文献   
47.
2-Amino-5-aryl-pyridines, exemplified by compound 1, had been identified as a synthetically tractable series of CB2 agonists from a high-throughput screen of the GlaxoSmithKline compound collection. Described herein are the results of an investigation of the structure–activity relationships (SAR) which led to the identification a number of potent and selective agonists.  相似文献   
48.
Annualization of woody perennials has the potential to revolutionize the breeding and production of fruit crops and rapidly improve horticultural species. Kiwifruit (Actinidia chinensis) is a recently domesticated fruit crop with a short history of breeding and tremendous potential for improvement. Previously, multiple kiwifruit CENTRORADIALIS (CEN)‐like genes have been identified as potential repressors of flowering. In this study, CRISPR/Cas9‐ mediated manipulation enabled functional analysis of kiwifruit CEN‐like genes AcCEN4 and AcCEN. Mutation of these genes transformed a climbing woody perennial, which develops axillary inflorescences after many years of juvenility, into a compact plant with rapid terminal flower and fruit development. The number of affected genes and alleles and severity of detected mutations correlated with the precocity and change in plant stature, suggesting that a bi‐allelic mutation of either AcCEN4 or AcCEN may be sufficient for early flowering, whereas mutations affecting both genes further contributed to precocity and enhanced the compact growth habit. CRISPR/Cas9‐mediated mutagenesis of AcCEN4 and AcCEN may be a valuable means to engineer Actinidia amenable for accelerated breeding, indoor farming and cultivation as an annual crop.  相似文献   
49.
Under cell stress, global protein synthesis is inhibited to preserve energy. One mechanism is to sequester and silence mRNAs in ribonucleoprotein complexes known as stress granules (SGs), which contain translationally silent mRNAs, preinitiation factors, and RNA-binding proteins. Y-box binding protein 1 (YB-1) localizes to SGs, but its role in SG biology is unknown. We now report that YB-1 directly binds to and translationally activates the 5′ untranslated region (UTR) of G3BP1 mRNAs, thereby controlling the availability of the G3BP1 SG nucleator for SG assembly. YB-1 inactivation in human sarcoma cells dramatically reduces G3BP1 and SG formation in vitro. YB-1 and G3BP1 expression are highly correlated in human sarcomas, and elevated G3BP1 expression correlates with poor survival. Finally, G3BP1 down-regulation in sarcoma xenografts prevents in vivo SG formation and tumor invasion, and completely blocks lung metastasis in mouse models. Together, these findings demonstrate a critical role for YB-1 in SG formation through translational activation of G3BP1, and highlight novel functions for SGs in tumor progression.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号