首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   41篇
  2017年   6篇
  2015年   5篇
  2014年   4篇
  2013年   6篇
  2012年   9篇
  2011年   10篇
  2010年   11篇
  2009年   6篇
  2008年   7篇
  2007年   4篇
  2006年   9篇
  2005年   6篇
  2004年   3篇
  2003年   6篇
  2002年   10篇
  2001年   15篇
  2000年   10篇
  1999年   8篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   6篇
  1992年   10篇
  1991年   13篇
  1990年   10篇
  1989年   12篇
  1988年   11篇
  1987年   7篇
  1986年   7篇
  1985年   12篇
  1984年   7篇
  1983年   9篇
  1982年   6篇
  1981年   7篇
  1980年   4篇
  1979年   2篇
  1978年   8篇
  1977年   8篇
  1976年   3篇
  1975年   3篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
  1971年   6篇
  1970年   2篇
  1969年   4篇
  1967年   6篇
  1966年   3篇
  1965年   2篇
排序方式: 共有347条查询结果,搜索用时 15 毫秒
121.
122.
The core of the phycobilisomes of Synechococcus 6301 (Anacystis nidulans) strain AN112 consists of two cylindrical elements each made up of the same four distinct subcomplexes: A (alpha AP beta AP)3; B (alpha AP beta AP)2 . 18.3K . 75K; C (alpha 1APB alpha 2AP beta 3AP) . 10.5K; and D (alpha AP beta AP)3 . 10.5K, where alpha AP and beta AP are the subunits of allophycocyanin, alpha APB is the subunit of allophycocyanin B, and 18.3K, 75K, and 10.5K are polypeptides of 18,300, 75,000, and 10,500 Da, respectively. An 18 S subassembly containing subcomplexes A and B has previously been characterized (Yamanaka, G., Lundell, D. J., and Glazer, A. N. (1982) J. Biol. Chem. 257, 4077-4086; Lundell, D. J., and Glazer, A. N. (1983) J. Biol. Chem. 258, 894-901, 902-908). A ternary core subassembly, containing complexes A, B, and C, was isolated from a limited tryptic digest of AN112 phycobilisomes and characterized with respect to composition and spectroscopic properties. Isolation of this ternary subassembly also establishes that subcomplex D must occupy a terminal position in each of the two core cylinders. Spectroscopic studies of the individual complexes, A-D, of the subassemblies AB and ABC, and of intact AN112 phycobilisomes showed core assembly-dependent changes in the circular dichroism spectra indicative of changes in the environment and/or conformation of the bilin chromophores within the individual subcomplexes. Two terminal energy acceptors are present in the phycobilisome core, alpha APB and 75K. No indication of interaction between the chromophores on these polypeptides was detected by circular dichroism spectroscopy. This result indicates that the bilins on alpha APB and 75K act as independent energy acceptors rather than as exciton pairs.  相似文献   
123.
The mechanism of action of the adenosine analog, neplanocin A (NPC), was investigated in human colon carcinoma cell line HT-29. Cell viability was reduced to 38 and 17% of control by 24-h exposure to 10(-5) and 10(-4) M NPC, respectively. Cytocidal activity was not affected by inhibition of adenosine deaminase with 2'-deoxycoformycin. Concomitant with decreased cell viability was the reduced incorporation of [14C]dThd and [3H]Leu, and to a lesser extent [3H]Urd, into acid-precipitable material. Labeling of rRNA and tRNA during drug treatment for 24 h with [methyl-3H]Met and [14C]Urd revealed that NPC primarily inhibited RNA methylation, and to a lesser extent, RNA synthesis. RNase T2 digests of total RNA indicated that base and 2'-O-methylation were inhibited to approximately the same degree. Metabolites of NPC were measured by reverse-phase high-performance liquid chromatography and it was found that the major drug metabolite was the drug analog of S-adenosylmethionine with little formation of the respective, S-adenosylhomocysteine metabolite. NPC was utilized to a very small degree for RNA synthesis where only 2 and 30 pmol of NPC/A260 were incorporated into rRNA and tRNA after 24-h exposure to 10(-5) and 10(-4) M NPC, respectively. These results indicate that NPC is metabolized to a metabolite of S-adenosylmethionine which is a poor methyl donor for RNA methyltransferases, and that the accompanying decrease in RNA methylation and protein synthesis appears to be related to its cytocidal activity.  相似文献   
124.
Ethidium homodimer (EthD; lambda Fmax 620 nm) at EthD:DNA ratios up to 1 dye:4-5 bp forms stable fluorescent complexes with double-stranded DNA (dsDNA) which can be detected with high sensitivity using a confocal fluorescence gel scanner (Glazer, A.N., Peck, K. & Mathies, R.A. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 3851-3855). However, on incubation with unlabeled DNA partial migration of EthD takes place from its complex with dsDNA to the unlabeled DNA. It is shown here that this migration is dependent on the fractional occupancy of intercalating sites in the original dsDNA-EthD complex and that there is no detectable transfer from dsDNA-EthD complexes formed at 50 bp: 1 dye. The monointercalator thiazole orange (TO; lambda Fmax 530 nm) forms readily dissociable complexes with dsDNA with a large fluorescence enhancement on binding (Lee, L.G., Chen, C. & Liu, L.A. (1986) Cytometry 7, 508-517). However, a large molar excess of TO does not displace EthD from its complex with dsDNA. When TO and EthD are bound to the same dsDNA molecule, excitation of TO leads to efficient energy transfer from TO to EthD. This observation shows the practicability of 'sensitizing' EthD fluorescence with a second intercalating dye having a very high absorption coefficient and efficient energy transfer characteristics. Electrophoresis on agarose gels, with TO in the buffer, of preformed linearized M13mp18 DNA-EthD complex together with unlabeled linearized pBR322 permits sensitive fluorescence detection in the same lane of pBR322 DNA-TO complex at 530 nm and of M13mp18 DNA-EthD complex at 620 nm. These observations lay the groundwork for the use of stable DNA-dye intercalation complexes carrying hundreds of chromophores in two-color applications such as the physical mapping of chromosomes.  相似文献   
125.
The phycocyanin-containing segments of the rod substructures of Anabaena variabilis phycobilisomes consist of complexes of phycocyanin with "linker" polypeptides of 27,000 and 32,500 daltons (Yu, M.-H., Glazer, A. N., and Williams, R. C. (1981) J. Biol. Chem. 256, 13130-13136). Complexes (alpha beta)3.27,000, (alpha beta)3.32,500, (alpha beta)6.27,000, [(alpha beta)6.32,500]n, (alpha beta)6.27,000 - (alpha beta)6.32,500 were prepared, where alpha beta represents a monomer of phycocyanin, and 27,000 and 32,500 represent the 27,000- and 32,500-dalton polypeptides, respectively. Tryptic digestion of (alpha beta)3.32,500 leads to a stable (alpha beta)3.28,000 complex which does not form higher aggregates. The 32,500 polypeptide is stable to trypsin in the [(alpha beta)6.32,500]n and (alpha beta)6.27,000 - [(alpha beta)6.32,500]n=1.2 aggregates. Upon trypsin treatment of all 27,000 still assembled into higher aggregates, (alpha beta)6.21,0900 and (alpha beta)6.21,000 - (alpha beta)6.32,500. The spectroscopic properties of phycocyanin-linker polypeptide complexes were not modified by the tryptic cleavages. These results show that the 32,500 polypeptide has two distinct functional domains, a 28,000 portion necessary to the stabilization of a trimeric phycocyanin complex and a 4,500 domain which links consecutive phycocyanin hexamers in the rod substructure. The 27,000 polypeptide likewise has two distinct functional domains: a 21,000 domain stabilizes a trimeric phycocyanin complex, a 6,000 domain is exposed in all of the assembly forms examined. From these and earlier studies, it is concluded that the 6,000 domain functions in the attachment of the rod substructures to the core of the phycobilisome.  相似文献   
126.
The phosphorylation of the high mobility group (HMG) proteins has been investigated in mouse Ehrlich ascites, L1210 and P388 leukemia cells, human colon carcinoma cells (HT-29), and Chinese hamster ovary cells. HMG 14 and 17, but not HMB 1 and 2, were phosphorylated in the nuclei of all cell lines with a serine being the site of modification for both proteins in Ehrlich ascites cells. Phosphorylation of HMG 14 and 17 was greatly reduced in cultured cells at plateau phase in comparison to log phase cells, suggesting that modification of HMG 14 and 17 is growth-associated. However, phosphorylation was not linked to DNA synthesis, since incorporation of 32P did not vary through G1 and S phase in synchronized Chinese hamster ovary cells. Treatment of HT-29 or Ehrlich ascites cells with sodium butyrate reduced HMG phosphorylation by 30 and 70%, respectively. The distribution of the phosphorylated HMG proteins in chromatin was examined using micrococcal nuclease and DNase I. 32P-HMG 14 and 17 were preferentially associated with micrococcal nuclease-sensitive regions as demonstrated by the release of a substantial fraction of the phosphorylated forms of these proteins under conditions which solubilized less than 3% of the DNA. Short digestions with DNase I did not show a marked release of 32P-HMG 14 or 17.  相似文献   
127.
Phycoerythrins of several species of the higher red alga Callithamnion show virtually identical spectra, typical of R-phycoerythrins, with absorption maxima at 565, 539, and 497 nanometers. One species, Callithamnion roseum, produces a phycoerythrin lacking the peak at 539 nanometers. Comparison of a “typical” R-phycoerythrin from Callithamnion byssoides with the “atypical” phycoerythrin of C. roseum shows that both proteins carry 35 bilins per native molecule of 240,000 daltons; however, C. byssoides phycoerythrin carries 27.6 phycoerythrobilin and 7.3 phycourobilin groups, whereas C. roseum phycoerythrin carries 24.1 phycoerythrobilin and 10.9 phycourobilin groups. These differences in the relative amounts of the bilin prosthetic groups account in large measure for the differences between the absorption spectra of the native proteins. The ratio of phycoerythrobilin to phycourobilin in C. roseum phycoerythrin can be modulated by varying the light intensity during growth.  相似文献   
128.
129.
The influence of mammalian DNA topoisomerase I phosphorylation on enzyme activity has been investigated. Dephosphorylation by calf intestine alkaline phosphatase abolished the DNA relaxing activity of DNA topoisomerase I and the sensitivity of the enzyme to its specific inhibitor, camptothecin. DNA topoisomerase I could be reactivated by incubation with purified protein kinase C. DNA topoisomerase I was then able to relax supercoiled DNA processively, like the native enzyme, and to cleave 32P-end-labeled SV40 DNA fragments at the same sequences as the native enzyme in the presence of camptothecin. These results show that active DNA topoisomerase I is a phosphoprotein and suggest a possible regulatory role of protein kinase on topoisomerase I activity and on its sensitivity to camptothecin.  相似文献   
130.
Summary Two closely similar phycoerythrins were purified from Cryptomonas sp. The two proteins were indistinguishable with respect to native molecular weight, subunit structure, photolability and immunological specificity, and differed only in their isoelectric points (pH 5.74 and 6.35), as determined by isoelectric focussing in polyacrylamide gels. Each protein consisted of two unequal subunits, (mol. wt. 11,800) and (mol. wt. 19,000), and each subunit contained covalently bound chromophore. In contrast to the blue-green and red algal phycoerythrins studied thus far, the Cryptomonas sp. phycoerythrins are extremely photolabile; exposure of the purified proteins to relatively short periods of intense illumination with visible light produces a marked decrease in fluorescence and in absorbance at 567 m.Abbreviation used SDS sodium dodecyl sulfate  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号