首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   855篇
  免费   139篇
  2020年   7篇
  2018年   9篇
  2017年   6篇
  2016年   12篇
  2015年   17篇
  2014年   14篇
  2013年   25篇
  2012年   35篇
  2011年   32篇
  2010年   26篇
  2009年   22篇
  2008年   29篇
  2007年   18篇
  2006年   33篇
  2005年   21篇
  2004年   18篇
  2003年   39篇
  2002年   30篇
  2001年   31篇
  2000年   19篇
  1999年   25篇
  1998年   10篇
  1997年   13篇
  1995年   12篇
  1994年   11篇
  1993年   8篇
  1992年   35篇
  1991年   18篇
  1990年   29篇
  1989年   23篇
  1988年   27篇
  1987年   8篇
  1986年   22篇
  1985年   22篇
  1984年   28篇
  1983年   10篇
  1982年   16篇
  1981年   14篇
  1980年   20篇
  1979年   25篇
  1978年   9篇
  1977年   23篇
  1976年   9篇
  1975年   9篇
  1974年   21篇
  1973年   7篇
  1972年   12篇
  1971年   8篇
  1970年   8篇
  1968年   14篇
排序方式: 共有994条查询结果,搜索用时 15 毫秒
101.
Zinc is an essential mineral, and infants are particularly vulnerable to zinc deficiency as they require large amounts of zinc for their normal growth and development. We have recently described the first loss-of-function mutation (H54R) in the zinc transporter ZnT-2 (SLC30A2) in mothers with infants harboring transient neonatal zinc deficiency (TNZD). Here we identified and characterized a novel heterozygous G87R ZnT-2 mutation in two unrelated Ashkenazi Jewish mothers with infants displaying TNZD. Transient transfection of G87R ZnT-2 resulted in endoplasmic reticulum-Golgi retention, whereas the WT transporter properly localized to intracellular secretory vesicles in HC11 and MCF-7 cells. Consequently, G87R ZnT-2 showed decreased stability compared with WT ZnT-2 as revealed by Western blot analysis. Three-dimensional homology modeling based on the crystal structure of YiiP, a close zinc transporter homologue from Escherichia coli, revealed that the basic arginine residue of the mutant G87R points toward the membrane lipid core, suggesting misfolding and possible loss-of-function. Indeed, functional assays including vesicular zinc accumulation, zinc secretion, and cytoplasmic zinc pool assessment revealed markedly impaired zinc transport in G87R ZnT-2 transfectants. Moreover, co-transfection experiments with both mutant and WT transporters revealed a dominant negative effect of G87R ZnT-2 over the WT ZnT-2; this was associated with mislocalization, decreased stability, and loss of zinc transport activity of the WT ZnT-2 due to homodimerization observed upon immunoprecipitation experiments. These findings establish that inactivating ZnT-2 mutations are an underlying basis of TNZD and provide the first evidence for the dominant inheritance of heterozygous ZnT-2 mutations via negative dominance due to homodimer formation.  相似文献   
102.
Clustered regularly interspaced short palindromic repeats (CRISPR) confer immunity against mobile genetic elements (MGEs) in prokaryotes. Streptococcus agalactiae, a leading cause of neonatal infections contains in its genome two CRISPR/Cas systems. We show that type 1‐C CRISPR2 is present in few strains but type 2‐A CRISPR1 is ubiquitous. Comparative sequence analysis of the CRISPR1 spacer content of 351 S. agalactiae strains revealed that it is extremely diverse due to the acquisition of new spacers, spacer duplications and spacer deletions that witness the dynamics of this system. The spacer content profile mirrors the S. agalactiae population structure. Transfer of a conjugative transposon targeted by CRISPR1 selected for spacer rearrangements, suggesting that deletions and duplications pre‐exist in the population. The comparison of protospacers located within MGE or the core genome and protospacer‐associated motif‐shuffling demonstrated that the GG motif is sufficient to discriminate self and non‐self and for spacer selection and integration. Strikingly more than 40% of the 949 different CRISPR1 spacers identified target MGEs found in S. agalactiae genomes. We thus propose that the S. agalactiae type II‐A CRISPR1/Cas system modulates the cohabitation of the species with its mobilome, as such contributing to the diversity of MGEs in the population.  相似文献   
103.

Background

FAAH (fatty acid amide hydrolase), primarily expressed in the liver, hydrolyzes the endocannabinoids fatty acid ethanolamides (FAA). Human FAAH gene mutations are associated with increased body weight and obesity. In our present study, using targeted metabolite and lipid profiling, and new global acetylome profiling methodologies, we examined the role of the liver on fuel and energy homeostasis in whole body FAAH−/− mice.

Methodology/Principal Findings

FAAH−/− mice exhibit altered energy homeostasis demonstrated by decreased oxygen consumption (Indirect calorimetry). FAAH−/− mice are hyperinsulinemic and have adipose, skeletal and hepatic insulin resistance as indicated by stable isotope phenotyping (SIPHEN). Fed state skeletal muscle and liver triglyceride levels was increased 2–3 fold, while glycogen was decreased 42% and 57% respectively. Hepatic cholesterol synthesis was decreased 22% in FAAH−/− mice. Dysregulated hepatic FAAH−/− lysine acetylation was consistent with their metabolite profiling. Fasted to fed increases in hepatic FAAH−/− acetyl-CoA (85%, p<0.01) corresponded to similar increases in citrate levels (45%). Altered FAAH−/− mitochondrial malate dehydrogenase (MDH2) acetylation, which can affect the malate aspartate shuttle, was consistent with our observation of a 25% decrease in fed malate and aspartate levels. Decreased fasted but not fed dihydroxyacetone-P and glycerol-3-P levels in FAAH−/− mice was consistent with a compensating contribution from decreased acetylation of fed FAAH−/− aldolase B. Fed FAAH−/− alcohol dehydrogenase (ADH) acetylation was also decreased.

Conclusions/Significance

Whole body FAAH deletion contributes to a pre-diabetic phenotype by mechanisms resulting in impairment of hepatic glucose and lipid metabolism. FAAH−/− mice had altered hepatic lysine acetylation, the pattern sharing similarities with acetylation changes reported with chronic alcohol treatment. Dysregulated hepatic lysine acetylation seen with impaired FAA hydrolysis could support the liver''s role in fostering the pre-diabetic state, and may reflect part of the mechanism underlying the hepatic effects of endocannabinoids in alcoholic liver disease mouse models.  相似文献   
104.
Introduction: Several studies have shown differences in survival trends between ethnic groups across adults with cancer in the UK. It is unclear whether these differences exist exclusively in the older adult population or whether they begin to emerge in children and young adults. Methods: Subjects (n = 3534) diagnosed with cancer under 30 years of age in Yorkshire between 1990 and 2005 were analysed. Differences in survival rates for diagnostic subgroups were estimated by ethnic group (south Asian or not) using Kaplan–Meier estimation and Cox regression. Results: When compared to non-south Asians (all other ethnic groups excluding south Asians) a significant increased risk of death was seen for south Asians with leukaemia (hazard ratio (HR) = 1.75; 95% confidence interval (CI) = 1.11–2.76) and lymphoma (HR = 2.05; 95% CI = 1.09–3.87), whereas south Asians with solid tumours other than central nervous system tumours had a significantly reduced risk of death(HR = 0.50; 95% CI = 0.28–0.89). This was independent of socioeconomic deprivation. Conclusion: We found evidence of poorer survival outcomes for south Asians compared to non-south Asian children and young adults with leukaemia and lymphoma, but better outcomes for south Asian children and young adults with other solid tumours. This needs to be explained, and carefully addressed in the on-going development of cancer services.  相似文献   
105.
COPI vesicles serve for transport of proteins and membrane lipids in the early secretory pathway. Their coat protein (coatomer) is a heptameric complex that is recruited to the Golgi by the small GTPase Arf1. Although recruited en bloc, coatomer can be viewed as a stable assembly of an adaptin‐like tetrameric subcomplex (CM4) and a trimeric ‘cage’ subcomplex (CM3). Following recruitment, coatomer stimulates ArfGAP‐dependent GTP hydrolysis on Arf1. Here, we employed recombinant coatomer subcomplexes to study the role of coatomer components in the regulation of ArfGAP2, an ArfGAP whose activity is strictly coatomer‐dependent. Within CM4, we define a novel hydrophobic pocket for ArfGAP2 interaction on the appendage domain of γ1‐COP. The CM4 subcomplex (but not CM3) is recruited to membranes through Arf1 and can subsequently recruit ArfGAP2. Neither CM3 nor CM4 in itself is effective in stimulating ArfGAP2 activity, but stimulation is regained when both subcomplexes are present. Our findings point to a distinct role of each of the two coatomer subcomplexes in the regulation of ArfGAP2‐dependent GTP hydrolysis on Arf1, where the CM4 subcomplex functions in GAP recruitment, while, similarly to the COPII system, the cage‐like CM3 subcomplex stimulates the catalytic reaction.  相似文献   
106.
The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress.  相似文献   
107.
108.
Eleven spectral vegetation indices that emphasize foliar plant pigments were calculated using airborne hyperspectral imagery and evaluated in 2004 and 2005 for their ability to detect experimental plots of corn manually inoculated with Ostrinia nubilalis (Hübner) neonate larvae. Manual inoculations were timed to simulate infestation of corn, Zea mays L., by first and second flights of adult O. nubilalis. The ability of spectral vegetation indices to detect O. nubilalis-inoculated plots improved as the growing season progressed, with multiple spectral vegetation indices able to identify infested plots in late August and early September. Our findings also indicate that for detecting O. nubilalis-related plant stress in corn, spectral vegetation indices targeting carotenoid and anthocyanin pigments are not as effective as those targeting chlorophyll. Analysis of image data suggests that feeding and stem boring by O. nubilalis larvae may increase the rate of plant senescence causing detectable differences in plant biomass and vigor when compared with control plots. Further, we identified an approximate time frame of 5-6 wk postinoculation, when spectral differences of manually inoculated "second" generation O. nubilalis plots seem to peak.  相似文献   
109.
110.
Arsenic trioxide (As(2)O(3)) is a potent inducer of apoptosis of leukemic cells in vitro and in vivo, but the mechanisms that mediate such effects are not well understood. We provide evidence that the Akt kinase is phosphorylated/activated during treatment of leukemia cells with As(2)O(3), to regulate downstream engagement of mammalian target of rapamycin (mTOR) and its effectors. Using cells with targeted disruption of both the Akt1 and Akt2 genes, we found that induction of arsenic trioxide-dependent apoptosis is strongly enhanced in the absence of these kinases, suggesting that Akt1/Akt2 are activated in a negative feedback regulatory manner, to control generation of As(2)O(3) responses. Consistent with this, As(2)O(3)-dependent pro-apoptotic effects are enhanced in double knock-out cells for both isoforms of the p70 S6 kinase (S6k1/S6k2), a downstream effector of Akt and mTOR. On the other hand, As(2)O(3)-dependent induction of apoptosis is diminished in cells with targeted disruption of TSC2, a negative upstream effector of mTOR. In studies using primary hematopoietic progenitors from patients with acute myeloid leukemia, we found that pharmacological inhibition of mTOR enhances the suppressive effects of arsenic trioxide on leukemic progenitor colony formation. Moreover, short interfering RNA-mediated inhibition of expression of the negative downstream effector, translational repressor 4E-BP1, partially reverses the effects of As(2)O(3). Altogether, these data provide evidence for a key regulatory role of the Akt/mTOR pathway in the generation of the effects of As(2)O(3), and suggest that targeting this signaling cascade may provide a novel therapeutic approach to enhance the anti-leukemic properties of As(2)O(3).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号