首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   499篇
  免费   35篇
  534篇
  2022年   6篇
  2021年   7篇
  2020年   5篇
  2019年   11篇
  2018年   6篇
  2017年   5篇
  2016年   14篇
  2015年   21篇
  2014年   20篇
  2013年   22篇
  2012年   34篇
  2011年   40篇
  2010年   27篇
  2009年   19篇
  2008年   34篇
  2007年   25篇
  2006年   22篇
  2005年   21篇
  2004年   17篇
  2003年   26篇
  2002年   16篇
  2000年   3篇
  1999年   7篇
  1998年   4篇
  1997年   6篇
  1995年   3篇
  1994年   7篇
  1993年   4篇
  1992年   5篇
  1991年   5篇
  1985年   3篇
  1984年   4篇
  1982年   3篇
  1981年   3篇
  1975年   4篇
  1973年   4篇
  1961年   3篇
  1960年   3篇
  1957年   2篇
  1955年   2篇
  1953年   2篇
  1951年   3篇
  1947年   2篇
  1943年   2篇
  1942年   2篇
  1936年   2篇
  1931年   2篇
  1929年   3篇
  1928年   2篇
  1927年   2篇
排序方式: 共有534条查询结果,搜索用时 11 毫秒
41.
The purinergic receptor, P2X7, has recently emerged as an important component of the innate immune response against microbial infections. Ligation of P2X7 by ATP can stimulate inflammasome activation and secretion of proinflammatory cytokines, but it can also lead directly to killing of intracellular pathogens in infected macrophages and epithelial cells. Thus, while some intracellular pathogens evade host defense responses by modulating with membrane trafficking or cell signaling in the infected cells, the host cells have also developed mechanisms for inhibiting infection. This review will focus on the effects of P2X7 on control of infection by intracellular pathogens, microbial virulence factors that interfere with P2X7 activity, and recent evidence linking polymorphisms in human P2X7 with susceptibility to infection.  相似文献   
42.
Galactosyl transferases in mycobacterial cell wall synthesis   总被引:1,自引:0,他引:1       下载免费PDF全文
Two galactosyl transferases can apparently account for the full biosynthesis of the cell wall galactan of mycobacteria. Evidence is presented based on enzymatic incubations with purified natural and synthetic galactofuranose (Galf) acceptors that the recombinant galactofuranosyl transferase, GlfT1, from Mycobacterium smegmatis, the Mycobacterium tuberculosis Rv3782 ortholog known to be involved in the initial steps of galactan formation, harbors dual β-(1→4) and β-(1→5) Galf transferase activities and that the product of the enzyme, decaprenyl-P-P-GlcNAc-Rha-Galf-Galf, serves as a direct substrate for full polymerization catalyzed by another bifunctional Galf transferase, GlfT2, the Rv3808c enzyme.  相似文献   
43.
Centrin in Giardia lamblia - ultrastructural localization   总被引:2,自引:0,他引:2  
Giardia lamblia is a multiflagellar parasite and one of the earliest diverging eukaryotic cells. It possesses a complex cytoskeleton based on different groups of microtubular structures - a ventral adhesive disc, four pairs of flagella, a median body and funis. Centrin is an important member of the EF-hand family of calcium-binding proteins, and it is known to show calcium-sensitive contractile behaviour. In the present study, we performed an ultrastructural localization of centrin in G. lamblia using several monoclonal antibodies to centrin. Microtubular structures such as the basal bodies, all the flagella axonemes, the adhesive disc, funis, and the median bodies presented positive labelling to centrin. In addition, the dense rods also demonstrated positive labelling. These results show that centrin is located in key positions related to microtubules. The role of centrin in these dynamic regions is discussed.  相似文献   
44.
Motile microorganisms rapidly respond to changes in various physico-chemical gradients by directing their motility to more favorable surroundings. Energy generation is one of the most important parameters for the survival of microorganisms in their environment. Therefore it is not surprising that microorganisms are able to monitor changes in the cellular energy generating processes. The signal for this behavioral response, which is called energy taxis, originates within the electron transport system. By coupling energy metabolism and behavior, energy taxis is fine-tuned to the environment a cell finds itself in and allows efficient adaptation to changing conditions that affect cellular energy levels. Thus, energy taxis provides cells with a versatile sensory system that enables them to navigate to niches where energy generation is optimized. This behavior is likely to govern vertical species stratification and the active migration of motile cells in response to shifting gradients of electron donors and/or acceptors which are observed within microbial mats, sediments and soil pores. Energy taxis has been characterized in several species and might be widespread in the microbial world. Genome sequencing revealed that many microorganisms from aquatic and soil environments possess large numbers of chemoreceptors and are likely to be capable of energy taxis. In contrast, species that have a fewer number of chemoreceptors are often found in specific, confined environments, where relatively constant environmental conditions are expected. Future studies focusing on characterizing behavioral responses in species that are adapted to diverse environmental conditions should unravel the molecular mechanisms underlying sensory behavior in general and energy taxis in particular. Such knowledge is critical to a better understanding of the ecological role of energy taxis.  相似文献   
45.
Azospirillum brasilense shows chemotaxis to a variety of nutrients and oxygen. Genes encoding the central signal transduction pathway in chemotaxis were identified by phenotypic complementation of generally non-chemotactic mutants. Sequencing of a DNA fragment, which complemented two different mutants, revealed a region of five open reading frames translated in one direction and encoding homologs of known genes comprising excitation and adaptation pathways for chemotaxis in other bacterial species. The major chemotaxis gene cluster appears to be essential for all known behavioral responses that direct swimming motility in A. brasilense. Phylogenetic and genomic analysis revealed three groups of chemotaxis operons in alpha-proteobacterial species and assigned the A. brasilense operon to one of them. Interestingly, operons that are shown to be major regulators of behavior in several alpha-proteobacterial species are not orthologous.  相似文献   
46.
Based on literature review and malacological collections, 168 native freshwater bivalve and five invasive species have been recorded for 52 hydrographic regions in South America. The higher species richness has been detected in the South Atlantic, Uruguay, Paraguay, and Amazon Brazilian hydrographic regions. Presence or absence data were analysed by Principal Coordinate for Phylogeny-Weighted. The lineage Veneroida was more representative in hydrographic regions that are poorer in species and located West of South America. The Mycetopodidae and Hyriidae lineages were predominant in regions that are richest in species toward the East of the continent. The distribution of invasive species Limnoperna fortunei is not related to species richness in different hydrographic regions there. The species richness and its distribution patterns are closely associated with the geological history of the continent. The hydrographic regions present distinct phylogenetic and species composition regardless of the level of richness. Therefore, not only should the richness be considered to be a criterion for prioritizing areas for conservation, but also the phylogenetic diversity of communities engaged in services and functional aspects relevant to ecosystem maintenance. A plan to the management of this fauna according to particular ecological characteristics and human uses of hydrographic regions is needed.  相似文献   
47.
Rabbit myelin basic protein (BP) was subjected to partial cleavage with plasmin, and 15 cleavage products were isolated by a combination of gel filtration and ion-exchange chromatography. Their identification was achieved by amino acid analysis and tryptic peptide mapping, supplemented in some instances by carboxy-terminal analyses with carboxypeptidases A, B, and Y and amino-terminal analyses with dipeptidyl aminopeptidase I. The results showed that major plasmic cleavage sites included the Lys89-Asn90, Lys133-Ser134, and Lys153-Leu154 bonds. Cleavages also occurred at the Arg31-His32, Lys53-Arg54, and Arg25-His26 bonds, but these appeared to be less extensive. A large number of additional peptides were produced in relatively low yield. The smaller of these were isolated from heterogeneous fractions by high-voltage electrophoresis-TLC. Amino acid analysis of these peptides showed that minor cleavage sites included the Arg9-His10, Lys13-Tyr14, Lys103-Gly104, Lys137-Gly138, Lys140-Gly141, and Arg160-Ser161 bonds. In spite of a lower selectivity toward peptide bonds in BP as compared with pepsin, cathepsin D, and thrombin, plasmin has the advantage over the former proteinases in that it does not cleave at or near the Phe44-Phe45 bond. Instead it cleaves at the Arg31-His32 and Lys53-Arg54 bonds, thus preserving the entire hydrophobic sequence Ile-Leu-Asp-Ser-Ile-Gly-Arg-Phe-Phe as well as short sequences to either side.  相似文献   
48.
The activities of six bacteriophage T2r(+)-induced enzymes (thymidylate synthetase, deoxycytidylate deaminase, thymidylate kinase, deoxycytidylate hydroxymethylase, deoxycytidine pyrophosphatase, and dihydrofolate reductase) were measured after dilution of phage-infected Escherichia coli B from 8 x 10(8) to 2 x 10(8) cells per ml. The only enzyme activity altered was that of deoxycytidylate deaminase, which increased three- to fourfold. Conversely, the rapid concentration of cells from 2 x 10(8) to 8 x 10(8) per ml did not result in a reduction in deaminase activity. Although an enhancement in aeration reduced the response of deoxycytidylate deaminase to cellular dilution, the influence of potential metabolic inhibitors or activators could not be shown. The change in deoxycytidylate deaminase activity appeared to be associated with an altered translational event, since the increase could not be prevented by rifampin but was blocked effectively by chloramphenicol and hydroxylamine. In addition, antibody to the T2 phage-induced deoxycytidylate deaminase demonstrated that the increase in enzyme activity was associated with a corresponding increase in radioactive leucine incorporated into the enzyme antigen.  相似文献   
49.
Generation of high levels of nitric oxide (NO) following induction of NOS2 by interleukin-1 beta (IL-1beta) triggers beta cell apoptosis in insulin-secreting RINm5F cells. Mitochondrial and nuclear events such as downregulation of the antiapoptotic protein Bcl-2, activation of the pore responsible for the permeability transition (PT) and DNA fragmentation are involved in the process. We report in the present paper that exposure of insulin-producing RINm5F cells to NO donors and to IL-1beta leads to oxidative carbonylation of both Bcl-2 and the adenine nucleotide translocator (ANT) component of the mitochondrial PT pore. When the effect of endogenous generation of high concentrations of NO following exposure of cells to IL-1beta was studied, carbonylation of Bcl-2 preceded downregulation of the protein. Overexpression of Mn-SOD decreases substantially the extent of Bcl-2 carbonylation in SIN-1-exposed cells. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) inhibition, carbonylation and translocation from cytoplasm to nucleus and DNA fragmentation were also induced by DETA/NO exposure. DETA/NO-induced carbonylation of Bcl-2 and ANT proteins takes place 6 h before apoptotic release of histone-associated DNA to cytoplasm. Time course studies also reveal a close parallel between GAPDH translocation to nucleus and carbonylation. Inhibitors of lipooxidation end products formation such as piridoxamine (PM) and aminoguanidine (AG) block NO-triggered carbonylation of Bcl-2, ANT and GAPDH, prevent NO-induced GAPDH enzyme inhibition and nuclear translocation and DNA fragmentation. Our results support the notion that the oxidative carbonylation of proteins plays a role in the control of NO-induced apoptosis.  相似文献   
50.
The tri-dimensional (3D) structure determined by NMR of functionally relevant High Activity Binding Peptides (HABPs) of chemically-synthesized malarial proteins, involved in invasion to target cells, is practically identical, at the atomic level, to their corresponding recombinantly produced proteins, determined by X-ray crystallography. Both recombinant proteins as well as these chemically-synthesized HABPs bind to host-cell receptors through channels or troughs formation, stabilized by hydrogen bonding; most of them are located on distant segments to the highly polymorphic, highly antigenic, strain specific amino acid sequences the parasite uses to evade immune pressure. When these immunologically silent conserved HABPs are specifically modified, they become highly immunogenic and capable of inducing protective immune responses, supporting the specifically modified minimal subunit-based, multiepitopic, chemically-synthesized vaccines concept.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号