首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5641篇
  免费   349篇
  5990篇
  2023年   14篇
  2022年   66篇
  2021年   111篇
  2020年   71篇
  2019年   82篇
  2018年   124篇
  2017年   108篇
  2016年   172篇
  2015年   264篇
  2014年   271篇
  2013年   435篇
  2012年   499篇
  2011年   431篇
  2010年   246篇
  2009年   257篇
  2008年   318篇
  2007年   329篇
  2006年   281篇
  2005年   280篇
  2004年   273篇
  2003年   265篇
  2002年   231篇
  2001年   48篇
  2000年   42篇
  1999年   50篇
  1998年   57篇
  1997年   35篇
  1996年   51篇
  1995年   34篇
  1994年   51篇
  1993年   24篇
  1992年   40篇
  1991年   31篇
  1990年   25篇
  1989年   24篇
  1988年   22篇
  1987年   16篇
  1986年   16篇
  1985年   20篇
  1984年   32篇
  1983年   19篇
  1982年   28篇
  1981年   23篇
  1980年   23篇
  1978年   18篇
  1977年   16篇
  1976年   17篇
  1975年   15篇
  1974年   12篇
  1973年   15篇
排序方式: 共有5990条查询结果,搜索用时 27 毫秒
81.
Allelic genes encoding water-borne signal proteins (pheromones) were amplified and sequenced from the somatic (macronuclear) sub-chromosomic genome of Antarctic and Arctic strains of the marine ciliate, Euplotes nobilii. Their open reading frames appeared to be specific for polypeptide sequences of 83 to 94 amino acids identifiable with cytoplasmic pheromone precursors (pre-pro-pheromones), requiring two proteolytic steps to remove the pre- and pro-segments and secrete the mature pheromones. Differently from most of the macronuclear genes that have so far been characterized from Euplotes and other hypotrich ciliates, the 5′ and 3′ non-coding regions of all the seven E. nobilii pheromone genes are much longer than the coding regions (621 to 700 versus 214 to 285 nucleotides), and the 5′ regions in particular show nearly identical sequences across the whole set of pheromone genes. These structural peculiarities of the non-coding regions are likely due to the presence of intron sequences and provide presumptive evidence that they are site of basic, conserved activities in the mechanism that regulates the expression of the E. nobilii pheromone genes.  相似文献   
82.
Purpose  We have previously demonstrated an association of the human leukocyte antigen (HLA), HLA-A2 allele with ovarian and prostate cancer mortality as well as a segregation of the ancestral HLA haplotype (AHH) 62.1 [(A2) B15 Cw3 DRB1*04] in patients with stage III–IV serous ovarian cancer. The objective of the present study was to determine the role of the HLA phenotype on the prognosis in stage III–IV malignant melanoma patients. Patients and methods  A cohort of metastatic malignant melanoma patients (n = 91), in stage III (n = 26) or IV (n = 65) were analysed for HLA-A, -B, -Cw and -DRB1 types by PCR/sequence-specific primer method. The frequencies of HLA alleles in the patients were compared to that of healthy Swedish bone marrow donors. The effect of HLA types on prognosis was defined by Kaplan–Meier and Cox analysis. Results  The presence of the AHH 62.1 in clinical stage IV patients was significantly and independently associated with the worst survival rate recorded from the appearance of metastasis (HR = 2.14; CI = 1.02–4.4; P = 0.04). In contrast, the period from the primary diagnosis to metastasis was the longest in patients with this haplotype (HR = 0.40; CI = 0.17–0.90; P = 0.02). Conclusions  Melanoma patients in our cohort with 62.1 AHH which is associated with autoimmune diseases have an initial strong anti-tumour control with longer metastasis-free period. These patients have rapid progression after the appearance of metastasis, responding poorly to chemo- or/and immunotherapy. This apparently paradoxical clinical process could be due to the interplay between tumour clones escape and immune surveillance ending up with a rapid disease progression. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
83.
Aphids display life cycles largely determined by the photoperiod.During the warm long-day seasons.most aphid species reproduce by viviparous parthenogenesis.The shortening of the photoperiod in autumn induces a switch to sexual reproduction.Males and sexual females mate to produce overwintering resistant eggs.In addition to this full life cycle(holocycle),there are anholocyelic lineages that do not respond to changes in photoperiod and reproduce continuously by parthenogenesis.The molecular or hormonal events that trigger the scasonal response(i.c,induction of the sexual phenotypes)are still unknown.Although circadian synthesis of melatonin is known to play a key role in vertebrate photoperiodism,the involvement of the circadian clock and/or of the hor-mone melatonin in insect seasonal responses is not so well established.Here we show that melatonin levels in the aphid Acyrthosiphon pisum are significantly higher in holocyclice aphids reared under short days than under long days,while no differences were found between anholoeyelic aphids under the same conditions.We also found that melatonin is localized in the aphid suboesophageal ganglion(SOG)and in the thoracic ganglionic mass(TGM).In analogy to vertcbrates,insect-type arylalkxylamine N-acetyltransferases(i-AANATs)are thought to play a key role in melatonin synthesis.We measured the expression of four I-AANAT genes identified in A.pisum and localized two of them in situ in the insect central nervous systems(CNS).Levels of expression of these genes were compatible with the quantities of melatonin observed.Moreover,like melatonin,expression of these genes was found in the SOG and the TGM.  相似文献   
84.
85.
3Beta-hydroxysterol Delta(14)-reductase operates during the conversion of lanosterol to cholesterol in mammalian cells. Besides the endoplasmic reticulum 3beta-hydroxysterol Delta(14)-reductase (C14SR) encoded by TM7SF2 gene, the lamin B receptor (LBR) of the inner nuclear membrane possesses 3beta-hydroxysterol Delta(14)-reductase activity, based on its ability to complement C14SR-defective yeast strains. LBR was indicated as the primary 3beta-hydroxysterol Delta(14)-reductase in human cholesterol biosynthesis, since mutations in LBR gene were found in Greenberg skeletal dysplasia, characterized by accumulation of Delta(14)-unsaturated sterols. This study addresses the issue of C14SR and LBR role in cholesterol biosynthesis. Both human C14SR and LBR expressed in COS-1 cells exhibit 3beta-hydroxysterol Delta(14)-reductase activity in vitro. TM7SF2 mRNA and C14SR protein expression in HepG2 cells grown in delipidated serum (LPDS) plus lovastatin (sterol starvation) were 4- and 8-fold higher, respectively, than in LPDS plus 25-hydroxycholesterol (sterol feeding), resulting in 4-fold higher 3beta-hydroxysterol Delta(14)-reductase activity. No variations in LBR mRNA and protein levels were detected in the same conditions. The induction of TM7SF2 gene expression is turned-on by promoter activation in response to low cell sterol levels and is mediated by SREBP-2. The results suggest a primary role of C14SR in human cholesterol biosynthesis, whereas LBR role in the pathway remains unclear.  相似文献   
86.
Peroxisome proliferator activated receptors (PPARs) are a class of nuclear receptors involved in lipid and glucidic metabolism, immune regulation, and cell differentiation. Many of their biological activities have been studied by using selective synthetic activators (mainly fibrates and thiazolidinediones) which have been already employed in therapeutic protocols. Both kinds of drugs, however, showed pharmacotoxicological profiles, which cannot be ascribed by any means to receptor activation. To better understand these non-receptorial or extrareceptorial aspects, the effect of different PPAR-ligands on the metabolic status of human HL-60 cell line has been investigated. At this regard, NMR analysis of cell culture supernatants was accomplished in order to monitor modifications at the level of cell metabolism. Cell growth and chemiluminescence assays were employed to verify cell differentiation. Results showed that all the considered PPAR-ligands, although with different potencies and independently from their PPAR binding specificity, induced a significant derangement of the mitochondrial respiratory chain consisting in a strong inhibition of NADH-cytochrome c reductase activity. This derangement has been shown to be strictly correlated to the adaptive metabolic modifications, as evidenced by the increased formation of lactate and acetate, due to the stimulation of anaerobic glycolysis and fatty acid beta-oxidation. It is worthy noting that the mitochondrial dysfunction appeared also linked to the capacity of any given PPAR-ligand to induce cell differentiation. These data could afford an explanation of biochemical and toxicological aspects related to the therapeutic use of synthetic PPAR-ligands and suggest a revision of PPAR pathophysiologic mechanisms.  相似文献   
87.
Clear renal cell carcinomas (RCC) frequently express carbonic anydrase IX (CA IX) because of non-functional mutation of von Hippel Lindau (VHL) tumor suppressor gene. CA IX is a tumor-associated transmembrane antigen, which catalyzes the extracellular, reversible hydration of carbon dioxide to bicarbonate and proton and thereby contributes to acidification of extracellular milieu. Extracellular acidic pH facilitates tumor growth and progression. CA IX expression is upregulated by Hypoxia Inducible Factor-1 (HIF-1), which is negatively controlled by oxygen via wild type VHL protein and is also regulated by the cell redox state. We investigated the immunohistochemical pattern of distribution of CA IX in a small series (14 cases) of RCCs. CA IX expression was matched with the redox state of RCC, stratifying our series in relation to clinical and histopathological parameters, such as Fuhrman grade, staging, proliferation markers expression, and particularly, the presence of necrosis. Our results show for the first time the existence of a perivascular pattern of CA IX distribution in RCC. We also found a significant relationship between CA IX expression and the presence of necrosis. Tumors with higher CA IX expression exhibited higher degree of necrosis (p < 0.05). Notably, an almost significant relationship between the redox state and CA IX expression was detected in RCC patients with 5 years disease-free survival, most of them showing organ-confined disease. Tumors with lower redox state showed an algebraically higher degree of CA IX expression. On the contrary, tumors with higher redox state exhibited an algebraically lower CA IX expression (p = 0.057). The observed relationship of CA IX expression and necrosis suggests a role for CA IX in RCC. Further investigations are necessary to further establish the role of the redox state in regulation of CA IX expression in RCC.  相似文献   
88.
Invasion of eukaryotic target cells by pathogenic bacteria requires extensive remodelling of the membrane and actin cytoskeleton. Here we show that the remodelling process is regulated by the ubiquitin C‐terminal hydrolase UCH‐L1 that promotes the invasion of epithelial cells by Listeria monocytogenes and Salmonella enterica. Knockdown of UCH‐L1 reduced the uptake of both bacteria, while expression of the catalytically active enzyme promoted efficient internalization in the UCH‐L1‐negative HeLa cell line. The entry of L. monocytogenes involves binding to the receptor tyrosine kinase Met, which leads to receptor phosphorylation and ubiquitination. UCH‐L1 controls the early membrane‐associated events of this triggering cascade since knockdown was associated with altered phosphorylation of the c‐cbl docking site on Tyr1003, reduced ubiquitination of the receptor and altered activation of downstream ERK1/2‐ and AKT‐dependent signalling in response to the natural ligand Hepatocyte Growth Factor (HGF). The regulation of cytoskeleton dynamics was further confirmed by the induction of actin stress fibres in HeLa expressing the active enzyme but not the catalytic mutant UCH‐L1C90S. These findings highlight a previously unrecognized involvement of the ubiquitin cycle in bacterial entry. UCH‐L1 is highly expressed in malignant cells that may therefore be particularly susceptible to invasion by bacteria‐based drug delivery systems.  相似文献   
89.
Glucocorticoids have long been used as first-line immunosuppressants, although their precise mechanism of action has not been fully elucidated yet. This study evaluated the gene and protein expression of monocyte chemoattractant protein-1 (MCP-1), and its relationship with interleukin-12 and interleukin-10 synthesis, in human monocyte-derived dendritic cells exposed to dexamethasone. Dendritic cells were differentiated in the presence or in the absence of dexamethasone and then activated by IFN-gamma+soluble CD40 ligand; the gene and protein expression of target cytokines was measured by real-time PCR and ELISA, respectively. Our results showed that dexamethasone-primed mature dendritic cells expressed low levels of interleukin-12, and, at the opposite, high levels of interleukin-10 and MCP-1. Transfection experiments confirmed the ability of dexamethasone to activate MCP-1 gene promoter. Dexamethasone increased also MCP-2, but not MCP-3 synthesis, and the gene expression of CC chemokine receptor-2 by mature dendritic cells. The addition of anti-MCP-1 blocking antibody depressed MCP-1 release, and increased interleukin-12 production in dexamethasone-treated dendritic cells, thus demonstrating that interleukin-12 downregulation is largely dependent on MCP-1 overexpression. Our findings suggest that the induction of MCP expression in human dendritic cells by dexamethasone, and the amplification of cell response via the upregulation of the chemokine cognate receptor, may be critical to inhibit type 1 T-helper-biased immune response and, possibly, to favor type 2 T-helper-skewed response.  相似文献   
90.
This article presents an immune inspired algorithm to tackle the Multiple Sequence Alignment (MSA) problem. MSA is one of the most important tasks in biological sequence analysis. Although this paper focuses on protein alignments, most of the discussion and methodology may also be applied to DNA alignments. The problem of finding the multiple alignment was investigated in the study by Bonizzoni and Vedova and Wang and Jiang, and proved to be a NP-hard (non-deterministic polynomial-time hard) problem. The presented algorithm, called Immunological Multiple Sequence Alignment Algorithm (IMSA), incorporates two new strategies to create the initial population and specific ad hoc mutation operators. It is based on the 'weighted sum of pairs' as objective function, to evaluate a given candidate alignment. IMSA was tested using both classical benchmarks of BAliBASE (versions 1.0, 2.0 and 3.0), and experimental results indicate that it is comparable with state-of-the-art multiple alignment algorithms, in terms of quality of alignments, weighted Sums-of-Pairs (SP) and Column Score (CS) values. The main novelty of IMSA is its ability to generate more than a single suboptimal alignment, for every MSA instance; this behaviour is due to the stochastic nature of the algorithm and of the populations evolved during the convergence process. This feature will help the decision maker to assess and select a biologically relevant multiple sequence alignment. Finally, the designed algorithm can be used as a local search procedure to properly explore promising alignments of the search space.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号