全文获取类型
收费全文 | 5556篇 |
免费 | 338篇 |
专业分类
5894篇 |
出版年
2023年 | 13篇 |
2022年 | 65篇 |
2021年 | 108篇 |
2020年 | 72篇 |
2019年 | 82篇 |
2018年 | 122篇 |
2017年 | 106篇 |
2016年 | 170篇 |
2015年 | 263篇 |
2014年 | 267篇 |
2013年 | 429篇 |
2012年 | 488篇 |
2011年 | 425篇 |
2010年 | 245篇 |
2009年 | 252篇 |
2008年 | 313篇 |
2007年 | 321篇 |
2006年 | 279篇 |
2005年 | 274篇 |
2004年 | 272篇 |
2003年 | 265篇 |
2002年 | 227篇 |
2001年 | 46篇 |
2000年 | 41篇 |
1999年 | 49篇 |
1998年 | 56篇 |
1997年 | 35篇 |
1996年 | 49篇 |
1995年 | 33篇 |
1994年 | 50篇 |
1993年 | 21篇 |
1992年 | 38篇 |
1991年 | 31篇 |
1990年 | 25篇 |
1989年 | 23篇 |
1988年 | 22篇 |
1987年 | 16篇 |
1986年 | 18篇 |
1985年 | 18篇 |
1984年 | 34篇 |
1983年 | 18篇 |
1982年 | 26篇 |
1981年 | 22篇 |
1980年 | 22篇 |
1979年 | 11篇 |
1978年 | 18篇 |
1977年 | 16篇 |
1976年 | 17篇 |
1975年 | 16篇 |
1973年 | 15篇 |
排序方式: 共有5894条查询结果,搜索用时 15 毫秒
41.
Jachen A. Solinger Roberta Paolinelli Holger Kl?? Francesco Berlanda Scorza Stefano Marchesi Ursula Sauder Dai Mitsushima Fabrizio Capuani Stephen R. Stürzenbaum Giuseppe Cassata 《PLoS genetics》2010,6(1)
Although acetylated α-tubulin is known to be a marker of stable microtubules in neurons, precise factors that regulate α-tubulin acetylation are, to date, largely unknown. Therefore, a genetic screen was employed in the nematode Caenorhabditis elegans that identified the Elongator complex as a possible regulator of α-tubulin acetylation. Detailed characterization of mutant animals revealed that the acetyltransferase activity of the Elongator is indeed required for correct acetylation of microtubules and for neuronal development. Moreover, the velocity of vesicles on microtubules was affected by mutations in Elongator. Elongator mutants also displayed defects in neurotransmitter levels. Furthermore, acetylation of α-tubulin was shown to act as a novel signal for the fine-tuning of microtubules dynamics by modulating α-tubulin turnover, which in turn affected neuronal shape. Given that mutations in the acetyltransferase subunit of the Elongator (Elp3) and in a scaffold subunit (Elp1) have previously been linked to human neurodegenerative diseases, namely Amyotrophic Lateral Sclerosis and Familial Dysautonomia respectively highlights the importance of this work and offers new insights to understand their etiology. 相似文献
42.
43.
Valerio Mori Adolfo Amici Francesca Mazzola Michele Di Stefano Laura Conforti Giulio Magni Silverio Ruggieri Nadia Raffaelli Giuseppe Orsomando 《PloS one》2014,9(11)
NAD plays essential redox and non-redox roles in cell biology. In mammals, its de novo and recycling biosynthetic pathways encompass two independent branches, the “amidated” and “deamidated” routes. Here we focused on the indispensable enzymes gating these two routes, i.e. nicotinamide mononucleotide adenylyltransferase (NMNAT), which in mammals comprises three distinct isozymes, and NAD synthetase (NADS). First, we measured the in vitro activity of the enzymes, and the levels of all their substrates and products in a number of tissues from the C57BL/6 mouse. Second, from these data, we derived in vivo estimates of enzymes''rates and quantitative contributions to NAD homeostasis. The NMNAT activity, mainly represented by nuclear NMNAT1, appears to be high and nonrate-limiting in all examined tissues, except in blood. The NADS activity, however, appears rate-limiting in lung and skeletal muscle, where its undetectable levels parallel a relative accumulation of the enzyme''s substrate NaAD (nicotinic acid adenine dinucleotide). In all tissues, the amidated NAD route was predominant, displaying highest rates in liver and kidney, and lowest in blood. In contrast, the minor deamidated route showed higher relative proportions in blood and small intestine, and higher absolute values in liver and small intestine. Such results provide the first comprehensive picture of the balance of the two alternative NAD biosynthetic routes in different mammalian tissues under physiological conditions. This fills a gap in the current knowledge of NAD biosynthesis, and provides a crucial information for the study of NAD metabolism and its role in disease. 相似文献
44.
Specific Detection of Leuconostoc mesenteroides subsp. mesenteroides with DNA Primers Identified by Randomly Amplified Polymorphic DNA Analysis 下载免费PDF全文
Giancarlo Moschetti Giuseppe Blaiotta Francesco Villani Salvatore Coppola 《Applied microbiology》2000,66(1):422-424
Randomly amplified polymorphic DNA analysis using primer 239 (5′ CTGAAGCGGA 3′) was performed to characterize Leuconostoc sp. strains. All the strains of Leuconostoc mesenteroides subsp. mesenteroides (with the exception of two strains), two strains formerly identified as L. gelidum, and one strain of Leuconostoc showed a common band at about 1.1 kb. This DNA fragment was cloned and sequenced in order to verify its suitability for identifying L. mesenteroides subsp. mesenteroides strains. 相似文献
45.
Batch cultures of the green microalga Chlorella vulgaris and cyanobacterium Planktothrix isothrix and their corresponding co-cultures were grown in municipal wastewater in order to study their growth as well as the nitrogen
(NH4–N) and phosphorus (PO43−–P) removal. The cultures were grown under two irradiances of 20 and 60 μmol photons m−2 s−1 in shaken and unshaken conditions. The co-culture of unshaken Chlorella and Planktothrix showed the greatest growth under both irradiances. The monoalgal Planktotrix cultures showed better growth when unshaken than when shaken, whereas Chlorella cultures grew better when mixed, but only at the higher irradiance. The highest percentage of nitrogen removal (up to 80%)
was attained by the unshaken co-cultures of Chlorella and Planktothrix. The amount of nitrogen recycled in the biomass reached up to 85% of that removed. Shaken monoalgal cultures of Chlorella showed phosphorus removal under both irradiances. They completely removed the initial phosphorus concentration (7.47 ± 0.17 mg L−1) within 96 and 48 h under 20 and 60 μmol photons m−2 s−1, respectively. 相似文献
46.
47.
Pietro Cugini Loredana Di Palma Salvatore Di Simone Piernatale Lucia Paola Battisti Alessandro Coppola Giuseppe Leone 《Chronobiology international》1993,10(1):73-78
This study aimed to explore the 24-h patterns of stroke volume, cardiac output, and peripheral vascular resistance along with other correlated variables, such as left ventricular ejection time, ejection velocity index, thoracic fluid index, heart rate, and blood pressure. The study was performed on 12 clinically healthy subjects by means of a noninvasive beat-to-beat monitoring using the thoracic electric bioimpedance technique associated with the automated sphygmomano-metric recording. Time data series were analyzed by means of chronobiological procedures. The results documented the occurrence of a circadian rhythm for all the variables investigated, giving relevance to the beat-to-beat bioperiodicity of cardiac output and peripheral vascular resistance. Temporal quantification of the investigated variables may be useful for a better insight of the chronophysiology of the cardiovascular apparatus. 相似文献
48.
George Calin Guglielmina N Ranzani Dino Amadori Vlad Herlea Irina Matei Giuseppe Barbanti-Brodano Massimo Negrini 《BMC genetics》2001,2(1):14-7
Background
Genomic instability has been reported at microsatellite tracts in few coding sequences. We have shown that the Bloom syndrome BLM gene may be a target of microsatelliteinstability (MSI) in a short poly-adenine repeat located in its coding region. To further characterize the involvement of BLM in tumorigenesis, we have investigated mutations in nine genes containing coding microsatellites in microsatellite mutator phenotype (MMP) positive and negative gastric carcinomas (GCs). 相似文献49.
Giuseppe Bagatto Louise C. Paquette Joseph D. Shorthouse 《Entomologia Experimentalis et Applicata》1996,79(1):111-117
We examined how leaf galls, induced by the cynipid wasp Phanacis taraxaci, influence the partitioning of photoassimilates within the host, the common dandelion, Taraxacum officinale. Galled and ungalled plants were exposed to 14CO2 and the labelled photoassimilates accumulating within galls and other parts of the host were measured. During the growth phase of the gall they were physiological sinks for photoassimilates, accumulating 9% to 70% of total carbon produced by the host, depending upon the number of galls per plant. High levels of 14C assimilation in the leaves of galled plants compared to controls, suggest that galls actively redirect carbon resources from unattacked leaves of their host plant. This represents a significant drain on the carbon resources of the host, which increases with the number and size of galls per plant. Active assimilation of 14C by the gall is greatest in the growth phase and is several orders of magnitude lower in the maturation phase. This finding is consistent with physiological and anatomical changes that occur during the two phases of gall development and represents a key developmental strategy by cynipids to ensure adequate food resources before larval growth begins. 相似文献
50.
Eva Trevisson Alberto Burlina Mara Doimo Vanessa Pertegato Alberto Casarin Luca Cesaro Placido Navas Giuseppe Basso Geppo Sartori Leonardo Salviati 《The Journal of biological chemistry》2009,284(42):28926-28934
Deficiency of argininosuccinate lyase (ASL) causes argininosuccinic aciduria, an urea cycle defect that may present with a severe neonatal onset form or with a late onset phenotype. To date phenotype-genotype correlations are still not clear because biochemical assays of ASL activity correlate poorly with clinical severity in patients. We employed a yeast-based functional complementation assay to assess the pathogenicity of 12 missense ASL mutations, to establish genotype-phenotype correlations, and to screen for intragenic complementation. Rather than determining ASL enzyme activity directly, we have measured the growth rate in arginine-free medium of a yeast ASLnull strain transformed with individual mutant ASL alleles. Individual haploid strains were also mated to obtain diploid, “compound heterozygous” yeast. We show that the late onset phenotypes arise in patients because they harbor individual alleles retaining high residual enzymatic activity or because of intragenic complementation among different mutated alleles. In these cases complementation occurs because in the hybrid tetrameric enzyme at least one active site without mutations can be formed or because the differently mutated alleles can stabilize each other, resulting in partial recovery of enzymatic activity. Functional complementation in yeast is simple and reproducible and allows the analysis of large numbers of mutant alleles. Moreover, it can be easily adapted for the analysis of mutations in other genes involved in urea cycle disorders.Argininosuccinic aciduria (ASAuria, MIM 207900)3 is an autosomal recessive disorder of the urea cycle caused by mutations of the ASL gene (hASL, MIM 608310), encoding argininosuccinate lyase (ASL; EC 4.3.2.1.) (1). This enzyme is ubiquitously expressed and catalyzes the reversible breakdown of argininosuccinate to arginine and fumarate. ASL belongs to a superfamily of hydrolases that includes adenylosuccinate lyase and fumarase, which share a homotetrameric structure and a similar catalytic mechanism. The tetrameric structure of ASL accounts for the phenomenon of intragenic complementation. This particular situation occurs when a multimeric protein is formed from subunits produced by differently mutated alleles of the same gene. On complementation, a partially functional hybrid protein is produced from the two distinct types of mutant subunits, neither of which individually has appreciable enzymatic activity (2).ASL participates to the urea cycle, and in humans it is essential for ammonia detoxification, whereas in lower organisms it is required for the biosynthesis of arginine. Saccharomyces cerevisiae strains harboring a deletion of the homolog of human ASL (ARG4) cannot grow on media lacking arginine (3).ASAuria is characterized by accumulation of argininosuccinic acid (ASA) in body fluids, and severe hyperammonaemia. The disease displays clinical heterogeneity with two main clinical phenotypes: the acute/neonatal onset form, with symptoms rapidly progressing to deep coma, apnea, and death (1), and the subacute/late onset type, which is diagnosed in infancy or childhood (4). Such patients may present simply with mental retardation or an epileptic disorder. In both types the diagnosis is established unambiguously by measuring plasma levels of ammonia (not always elevated in the late onset form), ASA, and its anhydrides by plasma amino acids assay (1). Over 40 mutations of the ASL gene have been reported, both amino acid substitutions and truncating variants, which are scattered throughout the gene (5, 6).We have previously reported the identification of novel mutations of the ASL gene in a cohort of Italian patients (7). In this study we employed a yeast model to validate the pathogenicity of missense ASL mutations found in our cohort, to study the effects of different allelic combinations, and to establish possible genotype-phenotype correlations. 相似文献