首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5653篇
  免费   349篇
  6002篇
  2023年   14篇
  2022年   68篇
  2021年   109篇
  2020年   71篇
  2019年   84篇
  2018年   122篇
  2017年   108篇
  2016年   173篇
  2015年   269篇
  2014年   273篇
  2013年   436篇
  2012年   493篇
  2011年   431篇
  2010年   250篇
  2009年   258篇
  2008年   317篇
  2007年   328篇
  2006年   281篇
  2005年   276篇
  2004年   277篇
  2003年   268篇
  2002年   234篇
  2001年   50篇
  2000年   45篇
  1999年   53篇
  1998年   56篇
  1997年   35篇
  1996年   50篇
  1995年   33篇
  1994年   51篇
  1993年   22篇
  1992年   42篇
  1991年   32篇
  1990年   25篇
  1989年   25篇
  1988年   23篇
  1987年   16篇
  1986年   18篇
  1985年   19篇
  1984年   32篇
  1983年   18篇
  1982年   27篇
  1981年   22篇
  1980年   23篇
  1979年   11篇
  1978年   17篇
  1977年   16篇
  1976年   17篇
  1975年   15篇
  1973年   15篇
排序方式: 共有6002条查询结果,搜索用时 10 毫秒
101.
Glioblastomas are the most frequent and aggressive intracranial neoplasms in humans, and despite advances and the introduction of the alkylating agent temozolomide in therapy have improved patient survival, resistance mechanisms limit benefits. Recent studies support that glioblastoma stem-like cells (GSCs), a cell subpopulation within the tumour, are involved in the aberrant expansion and therapy resistance properties of glioblastomas, through still unclear mechanisms. Emerging evidence suggests that sphingosine-1-phosphate (S1P) a potent onco-promoter able to act as extracellular signal, favours malignant and chemoresistance properties in GSCs. Notwithstanding, the origin of S1P in the GSC environment remains unknown. We investigated S1P metabolism, release, and role in cell survival properties of GSCs isolated from either U87-MG cell line or a primary culture of human glioblastoma. We show that both GSC models, grown as neurospheres and expressing GSC markers, are resistant to temozolomide, despite not expressing the DNA repair protein MGMT, a major contributor to temozolomide-resistance. Pulse experiments with labelled sphingosine revealed that both GSC types are able to rapidly phosphorylate the long-chain base, and that the newly produced S1P is efficiently degraded. Of relevance, we found that S1P was present in GSC extracellular medium, its level being significantly higher than in U87-MG cells, and that the extracellular/intracellular ratio of S1P was about ten-fold higher in GSCs. The activity of sphingosine kinases was undetectable in GSC media, suggesting that mechanisms of S1P transport to the extracellular environment are constitutive in GSCs. In addition we found that an inhibitor of S1P biosynthesis made GSCs sensitive to temozolomide (TMZ), and that exogenous S1P reverted this effect, thus involving extracellular S1P as a GSC survival signal in TMZ resistance. Altogether our data implicate for the first time GSCs as a pivotal source of extracellular S1P, which might act as an autocrine/paracrine signal contributing to their malignant properties.  相似文献   
102.
Fragmented populations at the edges of a species’ distribution can be highly exposed to the loss of genetic variation, unless sufficient gene flow maintains their genetic connectivity. Gene movements leading to successful establishment of external gametes (i.e. effective gene flow) into fragmented populations can solely be assessed by investigating the origin of natural regeneration. This study is focused on studying gene flow patterns in two silver fir stands in Central Apennines, where the species has a highly fragmented distribution. By using nuclear and chloroplast microsatellite markers, we investigated genetic variation, fine-scale spatial genetic structure, effective gene flow rates and large-scale connectivity characterizing both stands. Similar levels of genetic variation and low genetic differentiation between stands (F ST = 0.005) and across generations were found, coupled with low inbreeding and weak to absent SGS in the adult cohort (Sp < 0.003). On the other hand, substantial differences between the two stands in terms of gene flow rates were observed. Irrespective of the parentage approach used, higher gene flow rates were found in the stand located at the upper silver fir altitudinal limit, especially for seed-mediated gene flow (0.79 in the upper stand vs. 0.48 in the lower stand). Conversely, the lower stand was characterized by a higher reproductive dominance of local adults. Our findings suggest that, despite similar levels of genetic variation and generally high gene flow rates, different processes may be acting on the two stands, reflecting varying ecological conditions.  相似文献   
103.
104.

Background

Permissive hypercapnia has been shown to reduce lung injury in subjects with surfactant deficiency. Experimental studies suggest that hypercapnic acidosis by itself rather than decreased tidal volume may be a key protective factor.

Objectives

To study the differential effects of a lung protective ventilatory strategy or hypercapnic acidosis on gas exchange, hemodynamics and lung injury in an animal model of surfactant deficiency.

Methods

30 anesthetized, surfactant-depleted rabbits were mechanically ventilated (FiO2 = 0.8, PEEP = 7cmH2O) and randomized into three groups: Normoventilation-Normocapnia (NN)-group: tidal volume (Vt) = 7.5 ml/kg, target PaCO2 = 40 mmHg; Normoventilation-Hypercapnia (NH)-group: Vt = 7.5 ml/kg, target PaCO2 = 80 mmHg by increasing FiCO2; and a Hypoventilation-Hypercapnia (HH)-group: Vt = 4.5 ml/kg, target PaCO2 = 80 mmHg. Plasma lactate and interleukin (IL)-8 were measured every 2 h. Animals were sacrificed after 6 h to perform bronchoalveolar lavage (BAL), to measure lung wet-to-dry weight, lung tissue IL-8, and to obtain lung histology.

Results

PaO2 was significantly higher in the HH-group compared to the NN-group (p<0.05), with values of the NH-group between the HH- and NN-groups. Other markers of lung injury (wet-dry-weight, BAL-Protein, histology-score, plasma-IL-8 and lung tissue IL-8) resulted in significantly lower values for the HH-group compared to the NN-group and trends for the NH-group towards lower values compared to the NN-group. Lactate was significantly lower in both hypercapnia groups compared to the NN-group.

Conclusion

Whereas hypercapnic acidosis may have some beneficial effects, a significant effect on lung injury and systemic inflammatory response is dependent upon a lower tidal volume rather than resultant arterial CO2 tensions and pH alone.  相似文献   
105.
106.
107.
Mutations in the Lamin A/C gene (LMNA), which encodes A‐type nuclear Lamins, represent the most frequent genetic cause of dilated cardiomyopathy (DCM). This study is focused on a LMNA nonsense mutation (R321X) identified in several members of an Italian family that produces a truncated protein isoform, which co‐segregates with a severe form of cardiomyopathy with poor prognosis. However, no molecular mechanisms other than nonsense mediated decay of the messenger and possible haploinsufficiency were proposed to explain DCM. Aim of this study was to gain more insights into the disease‐causing mechanisms induced by the expression of R321X at cellular level. We detected the expression of R321X by Western blotting from whole lysate of a mutation carrier heart biopsy. When expressed in HEK293 cells, GFP‐ (or mCherry)‐tagged R321X mislocalized in the endoplasmic reticulum (ER) inducing the PERK‐CHOP axis of the ER stress response. Of note, confocal microscopy showed phosphorylation of PERK in sections of the mutation carrier heart biopsy. ER mislocalization of mCherry‐R321X also induced impaired ER Ca2+ handling, reduced capacitative Ca2+ entry at the plasma membrane and abnormal nuclear Ca2+ dynamics. In addition, expression of R321X by itself increased the apoptosis rate. In conclusion, R321X is the first LMNA mutant identified to date, which mislocalizes into the ER affecting cellular homeostasis mechanisms not strictly related to nuclear functions.  相似文献   
108.
Density functional theory calculation of the vibrational circular dichroism spectrum was used to assign the absolute configuration of an all‐carbon quaternary β‐stereocenter of a γ‐butyrolactone recently synthesized through an asymmetric organocatalytic tandem aldol/lactonization sequence. Comparison with the experimental spectrum is satisfactory, on account of the fact that spectroscopic features are weak due to the presence of multiple conformers. As a result, the (R) absolute configuration was assigned to the (+) optical isomer. Chirality 28:110–115, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   
109.
The effects of Alfalfa mosaic virus (AMV) infection on essential oil (EO) content and composition of a Sweet Basil cv. Gigante di Napoli were evaluated. A 10‐fold lower extraction yield from infected plants was observed, suggesting that morphological alterations induced by the disease may affect abundance and efficacy of secretive tissues. Organoleptic properties and thus quality of EO were severely affected and EO composition resulted severely altered, with a great increase in sesquiterpenes (from 72.8 to 19.8%) and a decrease in both monoterpenes (from 35 to 11%) and phenylpropanoids (from 44.5 to 15.8%, despite a slight increase in eugenol). Such report is indicative of possible direct or indirect metabolic consequences of AMV in a commercially important species like Ocimum basilicum is. The possible consequences of linalool and transβ‐farnesene content changes on the dispersion of viruliferous aphids are also examined and discussed.  相似文献   
110.
The urokinase‐type plasminogen activator (uPA) receptor (uPAR) participates to the mechanisms causing renal damage in response to hyperglycaemia. The main function of uPAR in podocytes (as well as soluble uPAR ‐(s)uPAR‐ from circulation) is to regulate podocyte function through αvβ3 integrin/Rac‐1. We addressed the question of whether blocking the uPAR pathway with the small peptide UPARANT, which inhibits uPAR binding to the formyl peptide receptors (FPRs) can improve kidney lesions in a rat model of streptozotocin (STZ)‐induced diabetes. The concentration of systemically administered UPARANT was measured in the plasma, in kidney and liver extracts and UPARANT effects on dysregulated uPAR pathway, αvβ3 integrin/Rac‐1 activity, renal fibrosis and kidney morphology were determined. UPARANT was found to revert STZ‐induced up‐regulation of uPA levels and activity, while uPAR on podocytes and (s)uPAR were unaffected. In glomeruli, UPARANT inhibited FPR2 expression suggesting that the drug may act downstream uPAR, and recovered the increased activity of the αvβ3 integrin/Rac‐1 pathway indicating a major role of uPAR in regulating podocyte function. At the functional level, UPARANT was shown to ameliorate: (a) the standard renal parameters, (b) the vascular permeability, (c) the renal inflammation, (d) the renal fibrosis including dysregulated plasminogen‐plasmin system, extracellular matrix accumulation and glomerular fibrotic areas and (e) morphological alterations of the glomerulus including diseased filtration barrier. These results provide the first demonstration that blocking the uPAR pathway can improve diabetic kidney lesion in the STZ model, thus suggesting the uPA/uPAR system as a promising target for the development of novel uPAR‐targeting approaches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号