首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5578篇
  免费   339篇
  5917篇
  2023年   13篇
  2022年   66篇
  2021年   108篇
  2020年   70篇
  2019年   81篇
  2018年   123篇
  2017年   106篇
  2016年   172篇
  2015年   263篇
  2014年   269篇
  2013年   432篇
  2012年   490篇
  2011年   423篇
  2010年   246篇
  2009年   253篇
  2008年   312篇
  2007年   321篇
  2006年   278篇
  2005年   272篇
  2004年   273篇
  2003年   265篇
  2002年   228篇
  2001年   47篇
  2000年   41篇
  1999年   49篇
  1998年   56篇
  1997年   36篇
  1996年   49篇
  1995年   33篇
  1994年   51篇
  1993年   22篇
  1992年   38篇
  1991年   31篇
  1990年   27篇
  1989年   24篇
  1988年   22篇
  1987年   20篇
  1986年   17篇
  1985年   20篇
  1984年   33篇
  1983年   18篇
  1982年   27篇
  1981年   22篇
  1980年   22篇
  1979年   12篇
  1978年   18篇
  1977年   16篇
  1976年   18篇
  1975年   15篇
  1973年   15篇
排序方式: 共有5917条查询结果,搜索用时 15 毫秒
241.
242.
Madern D  Zaccai G 《Biochimie》2004,86(4-5):295-303
Malate dehydrogenase from the extreme halophilic bacterium, Salinibacter ruber (Sr MalDH) was purified and characterised as a tetramer by sedimentation velocity measurements, showing the enzyme belongs to the LDH-like group of MalDHs. In contrast to most other halophilic enzymes, which unfold when incubated at low salt concentration, Sr MalDH is completely stable in absence of salt. Its amino acid composition does not display the strong acidic character specific of halophilic proteins. The enzyme displays a strong KCl-concentration dependent variation in K(m) for oxaloacetate, but not for the NADH co-factor. Its activity is reduced by high salt concentration, but remains sufficient for the enzyme to sustain catalysis at approximately 30% of its maximal rates in 3 M KCl. The properties of the protein were compared with those from other LDH-like MalDHs of bacterial and archaeal origins, showing that Sr MalDH in fact behaves like a non-halophilic enzyme.  相似文献   
243.
244.
Lung and skin are the organs directly exposed to environmental pollution. Ozone (O(3)) is a toxic, oxidant air pollutant, and exposure has been shown to induce antioxidant depletion as well as oxidation of lipids and proteins within the outermost skin layer (stratum corneum) and the lung respiratory tract lining fluids (RTLFs). To further define skin and lung responses to O(3) exposure, SKH-1 hairless mice were exposed to either 0.8 ppm of O(3) (a level occasionally reached in very polluted areas) or ambient air 6 h/day for 6 consecutive days. O(3) exposure resulted in the depletion of alpha-tocopherol in lung and plasma and induction in both skin and lung of heme oxygenase 1, cyclooxygenase 2, and proliferating cell nuclear antigen. O(3)-exposed animals showed a similar extent of upregulation of COX-2 and PCNA in lung and skin, whereas HO-1 was more responsive in skin than in lung (7-fold induction vs. 2-fold induction). In addition to these measures of response to oxidative stress, O(3) exposure led to the activation of nuclear factor kappaB measured as IkappaBalpha phosphorylation in both tissues. We conclude that in this model, O(3) at high pollutant levels is able to affect both lung and skin biology, inducing depletion of alpha-tocopherol and inducing stress-related responses in both skin epidermis and respiratory tract epithelium.  相似文献   
245.
Flavonoids, including isoflavones, are natural components in our diet and, with the burgeoning interest in alternative medicine, are increasingly being ingested by the general population. Plant phenolics, which form moieties on flavonoid rings, such as gallic acid, are also widely consumed. Several beneficial properties have been attributed to these dietary compounds, including antioxidant, anti-inflammatory, and anticarcinogenic effects. Flavonoid preparations are marketed as herbal medicines or dietary supplements for a variety of alleged nontoxic therapeutic effects. However, they have yet to pass controlled clinical trials for efficacy, and their potential for toxicity is an understudied field of research. This review summarizes the current knowledge regarding potential dietary flavonoid/phenolic-induced toxicity concerns, including their pro-oxidant activity, mitochondrial toxicity (potential apoptosis-inducing properties), and interactions with drug-metabolizing enzymes. Their chemopreventive activity in animal in vivo experiments may result from their ability to inhibit phase I and induce phase II carcinogen metabolizing enzymes that initiate carcinogenesis. They also inhibit the promotion stage of carcinogenesis by inhibiting oxygen radical-forming enzymes or enzymes that contribute to DNA synthesis or act as ATP mimics and inhibit protein kinases that contribute to proliferative signal transduction. Finally, they may prevent tumor development by inducing tumor cell apoptosis by inhibiting DNA topoisomerase II and p53 downregulation or by causing mitochondrial toxicity, which initiates mitochondrial apoptosis. While most flavonoids/phenolics are considered safe, flavonoid/phenolic therapy or chemopreventive use needs to be assessed as there have been reports of toxic flavonoid-drug interactions, liver failure, contact dermatitis, hemolytic anemia, and estrogenic-related concerns such as male reproductive health and breast cancer associated with dietary flavonoid/phenolic consumption or exposures.  相似文献   
246.
While the striatum has been implicated in reward processing, an alternative view contends that the striatum processes salient events in general. Using fMRI, we investigated human striatal responses to monetary reward while modulating the saliency surrounding its receipt. Money was maximally salient when its receipt depended on a correct response (active) and minimally salient when its receipt was completely independent of the task (passive). The saliency manipulation was confirmed by skin conductance responses and subjective ratings of the stimuli. Significant caudate and nucleus accumbens activations occurred following the active compared to passive money. Such activations were attributed to saliency rather than the motor requirement associated with the active money because striatal activations were not observed when the money was replaced by inconsequential, nonrewarding stimuli. The present study provides evidence that the striatum's role in reward processing is dependent on the saliency associated with reward, rather than value or hedonic feelings.  相似文献   
247.
Both enantiomers of "para-hydroxymexiletine" (PHM), one of the main metabolites of mexiletine, were synthesized and fully characterized. Properties of (R)- and (S)-PHM, in terms of blocking potency and stereoselectivity on frog skeletal muscle Na(+) channels, were evaluated. The presence of a hydroxy group on the aryloxy moiety in the 4-position, as in PHM, reduced potency with respect to mexiletine in reducing I(Na max). However, PHM showed clear use-dependent behavior similar to that of mexiletine and, in contrast with what is observed with the parent compound, maintained its stereoselectivity during the use-dependent block. Chirality 16:72-78, 2004.  相似文献   
248.
Here we report on the marked protective effect of resveratrol on 4-hydroxynonenal (4-HNE) induced oxidative stress and apoptotic death in Swiss 3T3 fibroblasts. 4-HNE, one of the major aldehydic products of the peroxidation of membrane w-6 polyunsaturated fatty acids, has been suggested to contribute to oxidant stress mediated cell injury. Indeed, in vitro treatment of 3T3 fibroblasts with 4-HNE induced a condition of oxidative stress as monitored by the oxidation of dichlorofluorescein diacetate; this reaction was prevented when cells were pretreated with resveratrol. Further, 4-HNE-treated fibroblasts eventually underwent apoptotic death as determined by differential staining and internucleosomal DNA fragmentation. Resveratrol pretreatment also prevented 4-HNE induced DNA fragmentation and apoptosis. These observations are consistent with a potential role of lipid peroxidation-derived products in programmed cell death and demonstrate that resveratrol can counteract this effect by quenching cell oxidative stress.  相似文献   
249.
We evaluated various constructs to obtain cell-specific expression of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) gene in cardiac myocytes after cDNA transfer by means of transfections or infections with adenovirus vectors. Expression of exogenous enhanced green fluorescent protein (EGFP) and SERCA genes was studied in cultured chicken embryo and neonatal rat cardiac myocytes, skeletal and smooth muscle cells, fibroblasts, and hepatocytes. Whereas the cytomegalovirus (CMV) promoter yielded high levels of protein expression in all cells studied, cardiac troponin T (cTnT) promoter segments demonstrated high specificity for cardiac myocytes. Their efficiency for protein expression was lower than that of the CMV promoter, but higher than that of cardiac myosin light chain or -myosin heavy chain promoter segments. A double virus system for Cre-dependent expression under control of the CMV promoter and Cre expression under control of a cardiac-specific promoter yielded high protein levels in cardiac myocytes, but only partial cell specificity due to significant Cre expression in hepatocytes. Specific intracellular targeting of gene products was demonstrated in situ by specific immunostaining of exogenous SERCA1 and endogenous SERCA2 and comparative fluorescence microscopy. The -374 cTnT promoter segment was the most advantageous of the promoters studied, producing cell-specific SERCA expression and a definite increase over endogenous Ca2+-ATPase activity as well as faster removal of cytosolic calcium after membrane excitation. We conclude that analysis of promoter efficiency and cell specificity is of definite advantage when cell-specific expression of exogenous SERCA is wanted in cardiac myocytes after cDNA delivery to mixed cell populations. cardiac myocytes; cell-specific expression; adenovirus vectors; calcium transport  相似文献   
250.
Copper is an essential transition metal ion for the function of key metabolic enzymes, but its uncontrolled redox reactivity is source of reactive oxygen species. Therefore a network of transporters strictly controls the trafficking of copper in living systems. Deficit, excess, or aberrant coordination of copper are conditions that may be detrimental, especially for neuronal cells, which are particularly sensitive to oxidative stress. Indeed, the genetic disturbances of copper homeostasis, Menkes' and Wilson's diseases, are associated with neurodegeneration. Furthermore, copper interacts with the proteins that are the hallmarks of neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, prion diseases, and familial amyotrophic lateral sclerosis. In all cases, copper-mediated oxidative stress is linked to mitochondrial dysfunction, which is a common feature of neurodegeneration. In particular we recently demonstrated that in copper deficiency, mitochondrial function is impaired due to decreased activity of cytochrome c oxidase, leading to production of reactive oxygen species, which in turn triggers mitochondria-mediated apoptotic neurodegeneration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号