首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1193篇
  免费   62篇
  2022年   8篇
  2021年   19篇
  2020年   16篇
  2019年   17篇
  2018年   28篇
  2017年   18篇
  2016年   25篇
  2015年   38篇
  2014年   61篇
  2013年   82篇
  2012年   94篇
  2011年   92篇
  2010年   52篇
  2009年   47篇
  2008年   81篇
  2007年   68篇
  2006年   56篇
  2005年   61篇
  2004年   50篇
  2003年   55篇
  2002年   48篇
  2001年   12篇
  2000年   18篇
  1999年   9篇
  1998年   10篇
  1997年   6篇
  1996年   10篇
  1995年   11篇
  1994年   12篇
  1993年   7篇
  1992年   14篇
  1991年   5篇
  1990年   14篇
  1989年   18篇
  1988年   5篇
  1987年   11篇
  1986年   6篇
  1985年   6篇
  1984年   4篇
  1983年   8篇
  1982年   6篇
  1981年   3篇
  1980年   9篇
  1977年   3篇
  1976年   3篇
  1974年   2篇
  1968年   3篇
  1965年   2篇
  1963年   3篇
  1962年   2篇
排序方式: 共有1255条查询结果,搜索用时 328 毫秒
101.
Allochromatium vinosum (formerly Chromatium vinosum) purple bacteria are known to adapt their light-harvesting strategy during growth according to environmental factors such as temperature and average light intensity. Under low light illumination or low ambient temperature conditions, most of the LH2 complexes in the photosynthetic membranes form a B820 exciton with reduced spectral overlap with LH1. To elucidate the reason for this light and temperature adaptation of the LH2 electronic structure, we performed broadband femtosecond transient absorption spectroscopy as a function of excitation wavelength in A. vinosum membranes. A target analysis of the acquired data yielded individual rate constants for all relevant elementary energy transfer (ET) processes. We found that the ET dynamics in high-light-grown membranes was well described by a homogeneous model, with forward and backward rate constants independent of the pump wavelength. Thus, the overall B800→B850→B890→ Reaction Center ET cascade is well described by simple triexponential kinetics. In the low-light-grown membranes, we found that the elementary backward transfer rate constant from B890 to B820 was strongly reduced compared with the corresponding constant from B890 to B850 in high-light-grown samples. The ET dynamics of low-light-grown membranes was strongly dependent on the pump wavelength, clearly showing that the excitation memory is not lost throughout the exciton lifetime. The observed pump energy dependence of the forward and backward ET rate constants suggests exciton diffusion via B850→ B850 transfer steps, making the overall ET dynamics nonexponential. Our results show that disorder plays a crucial role in our understanding of low-light adaptation in A. vinosum.  相似文献   
102.
103.
104.
Mice deficient in α-sarcoglycan (Sgca-null mice) develop progressive muscular dystrophy and serve as a model for human limb girdle muscular dystrophy type 2D. Sgca-null mice suffer a more severe myopathy than that of mdx mice, the model for Duchenne muscular dystrophy. This is the opposite of what is observed in humans and the reason for this is unknown. In an attempt to understand the cellular basis of this severe muscular dystrophy, we isolated clonal populations of myogenic progenitor cells (MPCs), the resident postnatal muscle progenitors of dystrophic and wild-type mice. MPCs from Sgca-null mice generated much smaller clones than MPCs from wild-type or mdx dystrophic mice. Impaired proliferation of Sgca-null myogenic precursors was confirmed by single fiber analysis and this difference correlated with Sgca expression during MPC proliferation. In the absence of dystrophin and associated proteins, which are only expressed after differentiation, SGCA complexes with and stabilizes FGFR1. Deficiency of Sgca leads to an absence of FGFR1 expression at the membrane and impaired MPC proliferation in response to bFGF. The low proliferation rate of Sgca-null MPCs was rescued by transduction with Sgca-expressing lentiviral vectors. When transplanted into dystrophic muscle, Sgca-null MPCs exhibited reduced engraftment. The reduced proliferative ability of Sgca-null MPCs explains, at least in part, the severity of this muscular dystrophy and also why wild-type donor progenitor cells engraft efficiently and consequently ameliorate disease.  相似文献   
105.
Recent studies have underscored a role for the epicardium as a source of multipotent cells. Here, we investigate the myogenic potential of adult human epicardium-derived cells (EPDCs) and analyze their ability to undergo skeletal myogenesis when cultured with differentiating primary myoblasts. Results are compared to those obtained with mesenchymal stromal cells (MSCs) and with endothelial cells, another mesodermal derivative. We demonstrate that EPDCs spontaneously fuse with pre-existing myotubes with an efficiency that is significantly higher than that of other cells. Although at a low frequency, endothelial cells may also contribute to myotube formation. In all cases analyzed, after entering the myotube, nonmuscle nuclei are reprogrammed to express muscle-specific genes. The fusion competence of nonmyogenic cells in vitro parallels their ability to reconstitute dystrophin expression in mdx mice. We additionally show that vascular cell adhesion molecule 1 (VCAM1) expression levels of nonmuscle cells are modulated by soluble factors secreted by skeletal myoblasts and that VCAM1 function is required for fusion to occur. Finally, treatment with interleukin (IL)-4 or IL-13, two cytokines released by differentiating myotubes, increases VCAM1 expression and enhances the rate of fusion of EPDCs and MSCs, but not that of endothelial cells.  相似文献   
106.
Moore W  Song XB  Di Giulio A 《ZooKeys》2011,(90):63-82
Larvae of the ground beetle genus Eustra Schmidt-Goebel are described and illustrated for the first time and some biological notes are reported. One specimen of an unknown Eustra species was collected while excavating a nest of the ant Pachycondyla javana Mayr, in Taiwan, which is the first report of a paussine associated with a member of the ant subfamily Ponerinae. Several larvae and adults of a second species, Eustra chinensis Bänninger, were collected in Shanghai under bark with no association with ants. First instar larvae of the latter species were also reared in the lab. The occurrence of larvae of the genus Eustra both inside and outside ant nests, together with a report of adults collected inside a nest in Taiwan, suggests that members of this genus may be facultative predators or facultative symbionts of ants, an attribute that has never been reported for this genus. The larvae of Eustra show several unique features, including a peculiar bidentate mandibular apex, an extremely long galea, one of two tarsal claws greatly reduced, abdominal setae (including those of terminal disk) elongate and clavate at apex, urogomphi wide and flattened, and inflated sensilla S-I. Larvae were studied by both optical and scanning electron microscopy, their morphological features are compared with those of other described Paussinae larvae, and their potential phylogenetic and functional significance are discussed.  相似文献   
107.

Aims

HMGB1 injection into the mouse heart, acutely after myocardial infarction (MI), improves left ventricular (LV) function and prevents remodeling. Here, we examined the effect of HMGB1 in chronically failing hearts.

Methods and Results

Adult C57 BL16 female mice underwent coronary artery ligation; three weeks later 200 ng HMGB1 or denatured HMGB1 (control) were injected in the peri-infarcted region of mouse failing hearts. Four weeks after treatment, both echocardiography and hemodynamics demonstrated a significant improvement in LV function in HMGB1-treated mice. Further, HMGB1-treated mice exhibited a ∼23% reduction in LV volume, a ∼48% increase in infarcted wall thickness and a ∼14% reduction in collagen deposition. HMGB1 induced cardiac regeneration and, within the infarcted region, it was found a ∼2-fold increase in c-kit+ cell number, a ∼13-fold increase in newly formed myocytes and a ∼2-fold increase in arteriole length density. HMGB1 also enhanced MMP2 and MMP9 activity and decreased TIMP-3 levels. Importantly, miR-206 expression 3 days after HMGB1 treatment was 4-5-fold higher than in control hearts and 20–25 fold higher that in sham operated hearts. HMGB1 ability to increase miR-206 was confirmed in vitro, in cardiac fibroblasts. TIMP3 was identified as a potential miR-206 target by TargetScan prediction analysis; further, in cultured cardiac fibroblasts, miR-206 gain- and loss-of-function studies and luciferase reporter assays showed that TIMP3 is a direct target of miR-206.

Conclusions

HMGB1 injected into chronically failing hearts enhanced LV function and attenuated LV remodelling; these effects were associated with cardiac regeneration, increased collagenolytic activity, miR-206 overexpression and miR-206 -mediated inhibition of TIMP-3.  相似文献   
108.
In this study, we report a comparative and quantitative analysis by mass spectrometry of the protein content of aqueous humour from cataract (control) patients. In addition to protein profiling, the approach is layered with quantitative proteomics using the iTRAQ? methodology. Aqueous humour from ten clinically-matched patients was collected and depleted of albumin and immunoglobulin G. Pairs of patient material were pooled and divided into three aliquots for subsequent analysis by alternative proteomic approaches. Excluding keratin, trypsin, residual albumin and immunoglobulins, a total of 198 protein groups were identified across the entire study. Relative protein quantitation with iTRAQ? revealed that 88% of the proteins had a maximal ±2-fold differential regulation between 3 of the 4 labelled samples, indicating minimal variation. The identified proteins were categorised by gene ontology and one third of the proteins were annotated as extracellular. The major molecular functions of the proteins in aqueous humour are binding (protein, metal ion, heparin, and DNA) and inhibition of proteolytic activity. Complementary to molecular function, the predominant biological processes for the proteins in aqueous humour are assigned to inflammatory and immune responses, and transport.  相似文献   
109.
Renal tubulo-interstitial fibrosis is a non-specific process, representing the final common pathway for all kidney diseases, irrespective of their initial cause, histological injury, or etiology, leading to gradual expansion of the fibrotic mass which destroys the normal structure of the tissue and results in organ dysfunction and, ultimately, in end-stage organ failure. Proteomic studies of the fibrotic pathophysiological mechanisms have been performed in cell cultures, animal models and human tissues, addressing some of the key issues. This article will review proteomic contribution to the raising current knowledge on renal fibrosis biology and also mention seminal open questions to which proteomic techniques and proteomists could fruitfully contribute.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号